New Course Requests

BIOL 661. Antimicrobial Agents. (1-0). Credit 1. Understanding of microbial agents, their limitations of use, their biosynthesis and regulation, and challenges in their development as new therapeutics. Prerequisite(s): Permission of the instructor.

CSCE 621. Language, Library, and Program Design Using C++. (3-0). Credit 3. Exploration of the interactions among language design, library design, and program design in the context of ISO standard C++ and its proposed extensions; Novel features provided by C++ and the design and programming techniques supported. Prerequisite(s): Graduate classification or approval of instructor; understanding of C++ and experience with software development projects helpful; knowledge of at least one programming language in addition to C and C++.

ECON 684. Professional Internship. (3-0). Credit 3. Opportunities to put economics learnt in the classroom into practice at government or industry facilities; design projects supervised by faculty coordinators and personnel at these locations; projects selected to match student's area of specialization. Prerequisite(s): Graduate classification and enrolled in the Master’s program in the Department of Economics.

HIST 624. Readings in Race, Ethnicity, and Migration. (3-0). Credit 3. Selected topics and themes in the history of race, ethnicity, and migration; individual and community identity-formation; colonization, slavery, and empire; migration and immigration; social movements; borders and nation-building. May be taken three times for credit as content varies. Prerequisite(s): Graduate classification.

HIST 625. Research Seminar in Race, Ethnicity, and Migration. (3-0). Credit 3. Topics and issues in the study of race, ethnicity, and migration history. May be taken three times for credit as content varies. Prerequisite(s): Graduate classification.

HIST 639. Readings in Asian History. (3-0). Credit 3. Social and cultural transformation of modern Asia; politics and government; wars and military; imperialism and foreign relations; economic development, society, and culture. Prerequisite(s): Graduate classification.

HIST 640. Readings in Atlantic World and Caribbean History. (3-0). Credit 3. Selected topics and themes in the history of the Atlantic World and Caribbean; revolutions, European colonialism in Africa and the Americas; transatlantic slave trade. Growth of plantation societies; abolition of slavery; post-emancipation period. May be taken three times for credit as content varies. Prerequisite(s): Graduate classification.

HIST 641. Research Seminar in Atlantic World and Caribbean History. (3-0). Credit 3. Topics and issues in the history of the Atlantic World and the Caribbean. May be taken three times for credit as content varies. Prerequisite(s): Graduate classification.
HIST 648. Readings on Topics in Modern European History. (3-0). Credit 3. Readings on topics covering the history of the political, social, cultural, intellectual, and diplomatic development of modern Europe as a whole or in part, or that of individual nations, empires, or regions. May be taken three times for credit as content varies. Prerequisite(s): Graduate classification.

HIST 674. Readings in Chicano-Latino History. (3-0). Credit 3. Selected topics and themes related to Chicano-Latino history; race/ethnicity, gender/sexuality, labor adaption and resistance movements; colonialism, transnationalism, immigration; identity, and citizenship. May be taken three times for credit as content varies. Prerequisite(s): Graduate classification.

HIST 675. Research Seminar in Chicano-Latino History. (3-0). Credit 3. Seminar focuses on researching and writing, core skills for historians. Students will conduct primary source research in a subfield Chicano-Latino history and compose an article-length paper. Prerequisite(s): Graduate classification.

VIBS 613. Evolutionary Bioinformatics. (1-0). Credit 1. Principles and concepts in molecular evolution, population genetics, and evolutionary genomics; applications of quantitative approaches (computation, statistics, and mathematics) in analyzing large and complex biological data sets; algorithm design and development of scientific software using high-level high-performance computer languages; emerging techniques for integrative data analysis, and the assumptions, advantages, and limitations of these techniques. Prerequisite(s): BIOL 451 or GENE/BIMS 320 or equivalent; or approval of instructor.

VLCS 681. Seminar. (1-0). Credit 1. Oral communication of current research and selected topics in large animal veterinary medicine and clinical research methodology to include lectures, presentations, interviews, and discussions. Prerequisite(s): Approval of instructor.
Graduate Council Report

September 6, 2012

Course Change Requests

HIST 645: Research Seminar in War and Society

Title:

FROM: Modern Military History

TO: Research Seminar in War and Society

Course Description:

FROM: Topics and issues in modern military history. May be taken two times for credit as content varies.

TO: Research and writing seminar focusing on issues and topics in war and society. May be taken four times for credit as content varies.

HIST 646: Readings in War and Society

Title:

FROM: Readings Military History

TO: Readings in War and Society

Course Description:

FROM: Selected topics and themes in military history; preparation for and conduct of war in different nations and among different peoples; social and cultural changes caused by military conflicts; developments in leadership, technology, military institutions, and civil-military relations. May be taken three times for credit as content varies.

TO: Reading seminar focusing on methodological issues related to the study of war on society; impact of organized violence and warfare on social structures; military organizations and operations; the experience of non-combatants. May be taken four times for credit as content varies.
NUEN 611: Radiation Detection and Measurement

Course Description:

FROM: Interactions of radiation with matter behavior of various nuclear radiation detectors studied both theoretically and experimentally in the laboratory; properties of radioisotopes useful to industry considered and evaluated from an engineering point of view.

TO: Interactions of radiation with matter behavior of various nuclear radiation detectors studied both theoretically and experimentally in the laboratory; properties of radionuclides useful to industry and medicine considered and evaluated from an engineering point of view.

NUEN 612: Radiological Safety and Hazards Evaluation

Course Description:

FROM: State and Federal regulations concerning radioactive materials; radiation safety as applied to accelerators, nuclear reactors, and radioactive byproducts; rigorous methods of analysis applied to computation of biological radiation dose and dose rates from various sources and geometries; radiation effects on physical systems.

TO: State and Federal regulations concerning radioactive materials; radiation safety as applied to accelerators, nuclear reactors, medical therapy and radioactive devices, and radioactive byproducts; rigorous methods of analysis applied to computation of biological radiation dose and dose rates from various sources and geometries; radiation effects on physical systems.

NUEN 613: Principles of Radiological Safety

Course Description:

FROM: Rigorous mathematical and physical approach to various aspects of radiological safety; derivation of equations involving radiation absorption, radiation dosimetry and calculations of radiation dose due to internal emitters; mathematical models developed for determination of maximum permissible body burdens and concentrations in air and water.

TO: Rigorous mathematical and physical approach to various aspects of radiological safety; derivation of equations involving radiation absorption, radiation dosimetry and calculations of radiation dose due to internal emitters; mathematical models relating to radionuclide concentrations in tumor, normal tissue, air or water to whole body dose.
NUEN 673: Radiation Biology

Course Description:

FROM: The response of biological systems to ionizing radiation at the molecular, cellular and organismal levels; effects of different dose levels with emphasis on the underlying mechanisms relevant to long term health effects at low doses.

TO: Response of biological systems to ionizing radiation at the molecular, cellular, tissue and organismal levels; effects of different dose rates with emphasis on the underlying mechanisms relevant to accidental, environmental and medical exposures.

NUEN 676: Health Physics Instrumentation

Title:

FROM: Health Physics Instrumentation

TO: Radiation Physics Instrumentation

Course Description:

FROM: Advanced course in health physics instrumentation intended for students pursuing graduate study in health physics; provides an in-depth knowledge of the components of radiation monitoring and measurement systems.

TO: Advanced course in instrumentation intended for radiation professionals and researchers; provides an in-depth knowledge of the components of radiation monitoring and measurement systems; includes quality assurance and quality control concepts for the safe and efficient use of radiation sources.

NUEN 681: Seminar

Course Description:

FROM: Special topics in nuclear engineering not covered by formal coursework. Whenever possible, guest lectures will discuss topics which they have personally investigated.

TO: Topics in nuclear engineering and health/medical physics not covered by formal coursework; whenever possible, guest lectures will discuss topics which they have personally investigated.
NUEN 684: Professional Internship

Course Description:

FROM: Training under the supervision of practicing engineers in settings appropriate to the student’s professional objectives.

TO: Training under the supervision of practitioners in settings appropriate to the student’s professional objectives.
Graduate Council Report

September 6, 2012

Special Consideration Item:

The College Agriculture and Life Sciences would like to change the names of the Master of Agriculture, Master of Science, and Doctor of Philosophy degrees in Rangeland Ecology and Management to the Master of Agriculture, Master of Science, and Doctor of Philosophy in Ecosystem Science and Management.