New Courses
Texas A&M University
Departmental Request for a New Course
Undergraduate • Graduate • Professional
• Submit original form and attach a course syllabus.

Form Instructions

1. Request submitted by (Department or Program Name): Educational Psychology

2. Course prefix, number and complete title of course: EPSY 656: Survey Instrument Development

3. Catalog course description (not to exceed 50 words): Experiences in developing instruments to measure cognition, attitude, or behavior; issues and practices relating to construct specification, instrument design and administration; emphasis on analysis and summary of validity study data.

4. Prerequisite(s): Graduate Classification; EPSY 640 or equivalent; Approval of Department Head

Cross-listed with:

Stacked with:

Cross-listed courses require the signature of both department heads.

5. Is this a variable credit course? [] Yes [X] No
If yes, from _____ to _____

6. Is this a repeatable course? [X] Yes [] No
If yes, this course may be taken _____ times.
Will this course be repeated within the same semester? [X] Yes [] No

7. This course will be:
 a. required for students enrolled in the following degree program(s) (e.g., B.A. in history)

 None

 b. an elective for students enrolled in the following degree program(s) (e.g., M.S. Ph.D. in geography)
For Doctoral Students in Educational Psychology; School Psychology; Counseling Psychology and other programs across the University. Also Master’s students in Educational Psychology may take this course.

8. If other departments are teaching or are responsible for related subject matter, the course must be coordinated with these departments. Attach approval letters.

9. Prefix Course # Title (excluding punctuation)

				E	P	S	Y	6	5	6	S	U	R	V	E	Y	I	N	S	T	R	U	M	E	N	T	D	E	V
Lect	Lab	SCH	CIP and Fund Code	Admin. Unit	Acad. Year	HCE Code																							
0	3	0	0	0	3	1	3	0	6	0	4	0	0	4	0	9	2	0	1	4	-	1	5	0	0	3	6	3	2

Approval recommended by:

Victor Wilson, Ph.D.
Department Head or Program Chair (Type Name & Sign) Date

George Cunningham, Ph.D.
Chair, College Review Committee

George Cunningham, Ph.D.
Dean of College

Mark Zorin, Ph.D.
Chair, GC or UCC

Submitted to Coordinating Board by:

Associate Director, Curricular Services Date

Effective Date

Questions regarding this form should be directed to Sandra Williams at 845-8201 or sandra-williams@tamu.edu.
Curricular Services – 3/10
EPSY 656 Survey Instrument Development
Syllabus Fall 2013

Class Time & Location
Monday, 9:00 ~ 12:00 PM
Room 717, Harrington Education Center (EDCT)

Office Hours
Monday, 2:00 ~ 4:00 PM, or by appointment

Instructor
Jessica Yue
725A Harrington Tower
jessicayue@tamu.edu

Course Description

This course will provide you with experiences in developing instruments to measure cognition, attitude, or behavior. Issues and practices relating to construct specification, instrument design and administration, and analysis and summary of validity study data will be emphasized. Prerequisite: Graduate Classification; EPSY 640 or equivalent; Approval of Department Head.

Course Objectives

1) This course will provide you with insights into validity studies in the process of developing instruments to measure cognition, attitude, or behavior.
2) Issues and practices relating to construct specification, instrument design and administration, and analysis and summary of validity study data will be emphasized with Psychometric techniques, specifically Rasch measurement.
3) By the end of the course, you should be able to produce a written summary that is suitable for publication in a peer-review journal based on your cumulative coursework.

Textbook

Supplemental

Software Packages
WINSTEPS is available in the EREL lab.

MINISTEP, a reduced version of WINSTEPS is free to download at http://www.winsteps.com/ministep.htm

Tentative Schedule of Topics

<table>
<thead>
<tr>
<th>Session</th>
<th>Date</th>
<th>Topic</th>
<th>Due</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>August 26</td>
<td>Validity (Development)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>September 02</td>
<td>Validity (Development) - continued</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>09</td>
<td>Instrument Development & Construct Specification</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>Item Writing</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>23</td>
<td>Sampling, Pilot Testing, & Referencing Framework</td>
<td>Data Description</td>
</tr>
<tr>
<td>6</td>
<td>30</td>
<td>True Score Test Theory</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>October 07</td>
<td>IRT & Rasch Measurement</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>14</td>
<td>Validity (Data)</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>21</td>
<td>Dimensionality</td>
<td>Development</td>
</tr>
<tr>
<td>10</td>
<td>28</td>
<td>Fit & Item Quality</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>November 04</td>
<td>Rating Scales & Distracters</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>11</td>
<td>Information, Reliability, & Precision</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>18</td>
<td>Logs & Transformations</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>25</td>
<td>Differential Item Functioning</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>December 02</td>
<td>FINAL PRESENTATION</td>
<td>Validation Paper</td>
</tr>
</tbody>
</table>

Please note that late assignments are not accepted except in instances of University excused absences. For more information on what is an excused absence and the University’s attendance policy please review Student Rule 7 here: http://student-rules.tamu.edu/rule07

Documentation of the excused absence is also required for any late work.
Readings

Sessions 1-2

Osterlind Chapters 1 & 4

Downing Chapters by Downing (1), Linn (2), Kane (7)

Session 3

Session 4

42. Osterlind Chapters: 8-9

Downing Chapter by Zieky (16)

Session 5

50. Osterlind Chapters: 6-7

Downing Chapter by McCallin (27)

Session 6

Measurement: Issues and Practice (Spring), 37-45.

41. Osterlind Chapter: 3

Session 7

Osterlind Chapter: 10

Session 8

Downing Chapter by Becker (30), Buckendahl (31), Haladyna (32)

Session 9

Osterlind Chapter: 13

Session 10

Osterlind Chapter: 12

Downing Chapter by Livingston (19)
Session 11

Session 12

Osterlind Chapter: 5

Session 13

Session 14

Performance Evaluation

1) Data description (10 points). The Data Description assignment requires students to identify and secure a dataset suitable for analysis for the Validation assignment, to obtain written permission to use those data if the data belong to someone else, to complete the Data Description assignment questionnaire on the Blackboard website; and to supply electronic copies of the instrument from which the data were generated, the record layout for the data, and the dataset in Excel or text format. Note that the Texas A&M IRB does not require class research projects to be approved by the IRB unless there is intention of publishing or disseminating study results.

2) Development (35 points). The Development assignment requires you to write a paper in which you develop a theoretical framework for behavioral measurement instrument of your design.
3) Validation paper (35 points). The Validation assignment requires students to produce a written summary that is suitable for publication in a peer-review journal based on analyses completed on the datasets obtained for the Data Description assignment.
4) Final presentation (20 points). Each student gives a 15-20 minutes presentation on his/her validation paper in the last session.

Grading

Course grades are based on the four components listed for performance evaluation.

<table>
<thead>
<tr>
<th>Points</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>86-100</td>
<td>A</td>
</tr>
<tr>
<td>76-85</td>
<td>B</td>
</tr>
<tr>
<td>66-75</td>
<td>C</td>
</tr>
<tr>
<td>51-65</td>
<td>D</td>
</tr>
<tr>
<td>Below 50</td>
<td>F</td>
</tr>
</tbody>
</table>

Students with Special Needs

The Americans with Disabilities Act (ADA) is a federal anti-discrimination statute that provides comprehensive civil rights protection for persons with disabilities. Among other things, this legislation requires that all students with disabilities be guaranteed a learning environment that provides for reasonable accommodation of their disabilities. If you believe you have a disability requiring an accommodation, please contact Disability Services, in Cain Hall, Room B118, or call 845-1637. For additional information visit http://disability.tamu.edu.

Any student who could require assistance in the event of a necessary evacuation of the building in which this class is taught are asked to notify the instructor so that individuals can be identified to assist him/her during an evacuation.

Academic Dishonesty

Academic Integrity Statement: An Aggie does not lie, cheat, or steal or tolerate those who do. As commonly defined, plagiarism consists of passing off as one’s own ideas, words, writings, etc. which belong to another. In accordance with this definition, you are committing plagiarism if you copy the work of another person and turn it in as your own, even if you should have the permission of that person. Plagiarism is one of the worst academic sins, for the plagiarist destroys the trust among colleagues, without which research cannot be safely communicated. If you have any questions regarding plagiarism, please consult the Honor Council Rules and Procedures on the web at aggiehonor.tamu.edu
From: Gary Briers
Sent: Tuesday, December 10, 2013 1:52 PM
To: Clarice Fulton; Tim Murphy; James Lindner
Cc: Jack Elliot
Subject: RE: EPSY 656 - Survey Instrument Development

The stewards of ALEC 620 (Dr. Lindner) and ALEC 621 (Dr. Wingenbach) saw no problems with the proposed course EPSY 656.

Thus, as chair of our departmental curriculum committee, I recommend that EPSY 656 go forth as planned. The Graduate Faculty of the Department of ALEC has concern with duplication of effort/interference with courses here in ALEC that appear to be related.

Gary Briers

Gary E. Briers
Professor
Department: of ALEC
Chair, ALEC Graduate Curriculum Committee
Texas A&M University
College Station, TX 77843-2116
Texas A&M University
Departmental Request for a New Course
Undergraduate • Graduate • Professional
• Submit original form and attach a course syllabus.

1. Request submitted by *(Department or Program Name)*:
 Geology and Geophysics

2. Course prefix, number and complete title of course:
 GEOL 614 Advanced Hydrogeology

3. Catalog course description (not to exceed 50 words):
 Geologic conditions determining the distribution and movement of ground water and their effect on the hydrologic properties of aquifers.

4. Prerequisite(s):
 Cross-listed with:
 Stacked with:
 GEOL 410
 Cross-listed courses require the signature of both department heads.

5. Is this a variable credit course?
 ☑ No
 If yes, from _____ to _____

6. Is this a repeatable course?
 ☑ No
 If yes, this course may be taken _____ times.
 Will this course be repeated within the same semester?
 ☑ No

7. This course will be:
 a. required for students enrolled in the following degree program(s) *(e.g., B.A. in history)*

 b. an elective for students enrolled in the following degree program(s) *(e.g., M.S. in geography)*
 M.S. and Ph.D. in Hydrogeology, M.S. and Ph.D. for Water Management and Hydrological Sciences program.

8. If other departments are teaching or are responsible for related subject matter, the course must be coordinated with these departments.
 Attach approval letters.

9. Prefix Course # Title (excluding punctuation)
 GEOL 614 ADVANCED HYDROGEOLOGY
 Lec. Lab SCH CP and Fund Code
 Admin. Unit Acad. Year HCL Code
 02 02 03 40 00 60 50 00 02 13 05 14 15 00 36 32
 Approval recommended by:
 [Signature] 11/4/13
 Department Head or Program Chair *(Type Name & Sign)* Date

 Chair, College Review Committee
 12/4/13
 Date

 Department Head or Program Chair *(Type Name & Sign)* Date
 (if cross-listed course)
 [Signature] 12/4/13
 Dean of College
 Date

 Submitted to Coordinating Board by:
 [Signature] 1/14/14
 Chair, GC or UCF
 Date
 Effective Date

Questions regarding this form should be directed to Sandra Williams at 845-8201 or sandra-williams@tamu.edu.
Curricular Services — 3/10
Course title and number GEOL 614: Advanced Hydrogeology
Term Fall 2014
Meeting times and location MWF 11:30-12:20PM; 104 Halbouty Building

Course Description and Prerequisites

Geologic conditions determining the distribution and movement of ground water and their effect on the hydrologic properties of aquifers. Hydrogeological concepts for geological engineering and environmental applications.

Learning Outcomes or Course Objectives

Student will be able to do all of the following.

1) Use different concepts such as evaporation, infiltration, groundwater recharge, base flow to analyze hydrological cycle and surface-groundwater interaction.

2) Conduct quantitative calculation of base flow based on stream hydrographs.

3) Use three important physical parameters (porosity, hydraulic conductivity, and storativity) of aquifers to understand the groundwater flow systems.

4) Measure and calculate hydraulic head, elevation head, pressure head, and hydraulic gradient in the field.

5) Conduct calculation using Darcy's law for a variety of problems such as computing discharge of water between two paralleled rivers, computing contaminant travel time from a source to a discharge point, and calculating groundwater flow in horizontal and vertical directions.

6) Interpret local, intermediate, and regional groundwater flows, and the law of refraction for groundwater flow at the interface of two media with different hydraulic conductivity values.

7) Derive the groundwater flow governing equation and applying the equation for practical boundary value problems (BVPs).

8) Apply the concept of effective stress and seepage force for geo-engineering problems such as landslide and slope failure, uplifting, erosion of landform, seismic activity after injecting fluid to deep formation, groundwater-surface water interaction during the flooding, and overthrust faulting aided by groundwater.

9) Calculate freshwater-seawater interface in coastal aquifers and islands.

10) Compute drawdowns near a pumping well using Theis solution and leaky Thesis solution.

11) Interpret different well testing results such as Pumping Test and Slug Test.

12) Calculate well capacity and well efficiency.

13) Graduate students can apply the learned fundamentals to carry out mini research term projects related to hydrogeology.
Instructor Information

Name: Dr. Hongbin Zhan
Telephone number: 979-862-7961 (o), 979-574-4819 (cell)
Email address: zhan@geos.tamu.edu
Office hours: Wednesday 3:00-5:00PM or by appointment
Office location: 259 Halbouty Building

Textbook and/or Resource Material

Class notes from the instructor will be emailed to the students at the first day of class free of charge.

Grading Policies

Grades will be based on demonstration of understanding of fundamental concepts in hydrogeology, and the ability to apply the concepts to conduct quantitative calculations of some commonly seen groundwater flow problems. An "A" indicates an excellent understanding of all concepts and the capability of interrelating the concepts into a seamless system, and the capability of applying the concepts for quantitative computation of complex groundwater flow problems. A "B" indicates the ability to apply knowledge and skills to solve complex problems. A "C" indicates a clear understanding of the concepts and the capability of performing most calculations correctly. In general, a "D" in this class indicates that a student has serious flaws in understanding the important concepts and is not capable of conducting quantitative calculations correctly. An "F" indicates that the student has a poor understanding of most concepts and cannot carry out the quantitative computation to most problems. The instructor will take attendance randomly and the summary of attendance will be taken into account for students whose numerical scores fall within 1.0 point of the boundaries between A-B (90), B-C(80), C-D(70), and D-F(60).

A student with an official medical, religious, and university excused absence will not be counted as absent. **Students should consult Student Rule 7 for attendance and excused absence.**

There are two exams (Midterm and Final) and a series of assignments and their weights towards the final grade are listed below.

A term project report is required.

This class is stacked with GEOL 410 (Hydrogeology). In addition to the requirement of that course, a graduate student must complete a term paper from his/her mini research project based on the fundamentals learned from this class.

The final grade is based on the following distribution of exams, homework assignments, and the term project report:

- homework assignments: 30%
- term paper: 5%
- midterm exam: 30%
- final exam: 35%

Numerical grades on homework assignments, term paper, midterm exam and final exam will be rounded at the first decimal place (e.g. 89.50%→90%, 89.49%→89%). Letter grades for individual assignments will be computed as follows: A=90-100%, B=80-89%, C=70-79%, D=60-69%, F<60%. No extra credit will be available.
Course Topics, Calendar of Activities, Major Assignment Dates

<table>
<thead>
<tr>
<th>Week</th>
<th>Topic</th>
<th>Required Reading</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hydrological Cycle; Management of groundwater.</td>
<td>Fetter Chapter 1.3, 1.5</td>
</tr>
<tr>
<td>2</td>
<td>Porosity.</td>
<td>Fetter Chapter 4.2</td>
</tr>
<tr>
<td>3</td>
<td>Groundwater potential and hydraulic head.</td>
<td>Fetter Chapter 5.1-5.5</td>
</tr>
<tr>
<td>4</td>
<td>Darcy’s law and hydraulic conductivity.</td>
<td>Fetter Chapter 4.4</td>
</tr>
<tr>
<td>5</td>
<td>Aquifers, aquitards, and aquicludes.</td>
<td>Fetter Chapter 4.5, 4.7</td>
</tr>
<tr>
<td>6</td>
<td>Transmissivity and storativity of confined aquifers; Release of water from confined aquifers.</td>
<td>Fetter Chapter 4.10-11</td>
</tr>
<tr>
<td>7</td>
<td>Transmissivity and specific yield of unconfined aquifers.</td>
<td>Fetter Chapter 4.6, 4.8</td>
</tr>
<tr>
<td>8</td>
<td>Equations of groundwater flow; Analytical solutions of one-dimensional groundwater flow.</td>
<td>Fetter Chapter 5.7</td>
</tr>
<tr>
<td>9</td>
<td>Groundwater flow patterns; Groundwater and geology (effective stress, groundwater flow and faulting).</td>
<td>Fetter Chapter 8.6, class notes</td>
</tr>
<tr>
<td>10</td>
<td>Land subsidence; Groundwater and geotechnical engineering; Flood control.</td>
<td>Class notes</td>
</tr>
<tr>
<td>11</td>
<td>Sea water intrusion.</td>
<td>Fetter Chapter 9.7-9.8</td>
</tr>
<tr>
<td>12</td>
<td>Steady-state flow to a well (the Thiem solution).</td>
<td>Fetter Chapter 7.4.2</td>
</tr>
<tr>
<td>13</td>
<td>Transient flow to a well: the Theis method and pumping test.</td>
<td>Fetter Chapter 7.3</td>
</tr>
<tr>
<td>14</td>
<td>Transient flow to a well in leaky confined and unconfined aquifer and slug test.</td>
<td>Fetter Chapter 7.4.4</td>
</tr>
</tbody>
</table>

Other Pertinent Course Information

Lab 1: Water budget and base flow calculations.
Lab 2: Map groundwater head distribution and groundwater flow magnitude and direction.
Lab 3: Apply Darcy’s law for different sets of groundwater flow problems.
Lab 4: Identification and characterization of aquifers, aquitards and aquicludes.
Lab 5: Illustration of aquifer storativity.
Lab 6: Calculation of total stress, effective stress, and neutral stress.
Lab 7: Study land subsidence of Houston, TX; Shanghai, China; and Mexico City, Mexico.
Lab 8: Study seawater intrusion in Galveston, TX and California coast.
Lab 9: Case studies of cones of depression in Ogallala aquifer, USA and North China Plain.
Lab 10: Case study of pumping test interpretation.
Lab 11: Case study of slug test interpretation.
Lab 12: Case study of horizontal well and hydraulic fracturing.
References:

Americans with Disabilities Act (ADA)

The Americans with Disabilities Act (ADA) is a federal anti-discrimination statute that provides comprehensive civil rights protection for persons with disabilities. Among other things, this legislation requires that all students with disabilities be guaranteed a learning environment that provides for reasonable accommodation of their disabilities. If you believe you have a disability requiring an accommodation, please contact Disability Services, in Cain Hall, Room B118, or call 845-1637. For additional information visit http://disability.tamu.edu

Academic Integrity

For additional information please visit: http://aggiehonor.tamu.edu

"An Aggie does not lie, cheat, or steal, or tolerate those who do."
Texas A&M University
Departmental Request for a Change in Course
Undergraduate ▲ Graduate ▲ Professional
Submit original form and attachments.

1. Request submitted by (Department or Program Name): Geology and Geophysics

2. Course prefix, number and complete title of course: GEOL 410 Hydrogeology

3. Change requested
 a. Prerequisite(s): From: To:
 b. Withdrawal (reason):
 c. Cross-list with:
 Cross-listed courses require the signature of both department heads.
 d. Change in course title and description. Enter complete current course title and current course description in item 5; enter proposed course title and proposed course description in item 6. Complete item 7 for change in title.
 e. Change in course number, contact hours (lab & lecture), and semester credit hours. Complete item 7. Attach a course syllabus.

4. For informational purposes only, please indicate course number if this course will be stacked: GEOL 514

5. Complete current course title and current catalog course description:
 Hydrogeology
 Geologic conditions determining the distribution and movement of ground water and their effect on the hydrologic properties of aquifers.

6. Complete proposed course title and proposed catalog course description (not to exceed 50 words):

7. a. As currently in course inventory:
 Prefix Course # Title (excluding punctuation)
 GEOL 410 HYDROGEOLOGY
 Lect. Lab SCH CIP and Fund Code Admin. Unit HCE Code Level
 03000340060500021305 003632
 b. Change to:
 Prefix Course # Title (excluding punctuation)
 GEOL 410 HYDROGEOLOGY
 Lect. Lab SCH CIP and Fund Code Admin. Unit Acad. Year HCE Code Level
 02020340060500021305 14 15 003632

Approval recommended by:
John R. [Signature] 11/5/13
Department Head or Program Chair (Type Name & Sign)
Date

Chair, College Review Committee 12/4/13
Dean of College
Date

Chair, GC or UCC
Date

Questions regarding this form should be directed to Sandra Williams at 845-8201 or sandra.williams@tamu.edu.
Curricular Services – 02/11
Course title and number GEOL 410: Hydrogeology
Term Fall 2014
Meeting times and location MWF 11:30-12:20PM; 104 Halbouty Building

Course Description and Prerequisites

Geologic conditions determining the distribution and movement of ground water and their effect on the hydrologic properties of aquifers.

Prerequisites: Junior or senior classification or approval of instructor.

Learning Outcomes or Course Objectives

Student will be able to do all of the following:

1) Use different concepts such as evaporation, infiltration, groundwater recharge, base flow to analyze hydrological cycle and surface-groundwater interaction.

2) Conduct quantitative calculation of base flow based on stream hydrographs.

3) Use three important physical parameters (porosity, hydraulic conductivity, and storativity) of aquifers to understand the groundwater flow systems.

4) Measure and calculate hydraulic head, elevation head, pressure head, and hydraulic gradient in the field.

5) Conduct calculation using Darcy’s law for a variety of problems such as computing discharge of water between two paralleled rivers, computing contaminant travel time from a source to a discharge point, and calculating groundwater flow in horizontal and vertical directions.

6) Interpret local, intermediate, and regional groundwater flows, and the law of refraction for groundwater flow at the interface of two media with different hydraulic conductivity values.

7) Derive the groundwater flow governing equation and applying the equation for practical boundary value problems (BVPs).

8) Apply the concept of effective stress and seepage force for geo-engineering problems such as landslide and slope failure, uplifting, erosion of landform, seismic activity after injecting fluid to deep formation, groundwater-surface water interaction during the flooding, and overthrust faulting aided by groundwater.

9) Calculate freshwater-seawater interface in coastal aquifers and islands.

10) Compute drawdowns near a pumping well using Theis solution and leaky Thesis solution.

11) Interpret different well testing results such as Pumping Test and Slug Test.

12) Calculate well capacity and well efficiency.
Instructor Information

Name Dr. Hongbin Zhan
Telephone number 979-862-7961 (o), 979-574-4819 (cell)
Email address zhan@geos.tamu.edu
Office hours Wednesday 3:00-5:00PM or by appointment
Office location 259 Halbouty Building

Textbook and/or Resource Material

Class notes from the instructor will be emailed to the students at the first day of class free of charge.

Grading Policies

Grades will be based on demonstration of understanding of fundamental concepts in hydrogeology, and the ability to apply the concepts to conduct quantitative calculations of some commonly seen groundwater flow problems. An "A" indicates an excellent understanding of all concepts and the capability of interrelating the concepts into a seamless system, and the capability of applying the concepts for quantitative computation of complex groundwater flow problems. A "B" indicates the ability to apply knowledge and skills to solve complex problems. A "C" indicates a clear understanding of the concepts and the capability of performing most calculations correctly. In general, a "D" in this class indicates that a student has serious flaws in understanding the important concepts and is not capable of conducting quantitative calculations correctly. An "F" indicates that the student has a poor understanding of most concepts and cannot carry out the quantitative computation to most problems. The instructor will take attendance randomly and the summary of attendance will be taken into account for students whose numerical scores fall within 1.0 point of the boundaries between A-B (90), B-C(80), C-D(70), and D-F(60).

A student with an official medical, religious, and university excused absence will not be counted as absent. Students should consult Student Rule 7 for attendance and excused absence.

There are two exams (Midterm and Final) and a series of assignments and their weights towards the final grade are listed below.

This class is stacked with GEOL 614 (Advanced Hydrogeology). A graduate student taking GEOL 614 must complete a term paper, which is not required for undergraduate students taking GEOL 410.

The final grade is based on the following distribution of exams and homework assignments.

- homework assignments: 35%
- midterm exam: 30%
- final exam: 35%

Numerical grades on homework assignments, midterm exam and final exam will be rounded at the first decimal place (e.g. 89.50%→90%, 89.49%→89%). Letter grades for individual assignments will be computed as follows: A=90-100%, B=80-89%, C=70-79%, D=60-69%, F <60%. No extra credit will be available.
Course Topics, Calendar of Activities, Major Assignment Dates:

<table>
<thead>
<tr>
<th>Week</th>
<th>Topic</th>
<th>Required Reading</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hydrological Cycle; Management of groundwater.</td>
<td>Fetter Chapter 1.3, 1.5</td>
</tr>
<tr>
<td>2</td>
<td>Porosity.</td>
<td>Fetter Chapter 4.2</td>
</tr>
<tr>
<td>3</td>
<td>Groundwater potential and hydraulic head.</td>
<td>Fetter Chapter 5.1-5.5</td>
</tr>
<tr>
<td>4</td>
<td>Darcy's law and hydraulic conductivity.</td>
<td>Fetter Chapter 4.4</td>
</tr>
<tr>
<td>5</td>
<td>Aquifers, aquitards, and aquicludes.</td>
<td>Fetter Chapter 4.5, 4.7</td>
</tr>
<tr>
<td>6</td>
<td>Transmissivity and storativity of confined aquifers; Release of water from confined aquifers.</td>
<td>Fetter Chapter 4.10-11</td>
</tr>
<tr>
<td>7</td>
<td>Transmissivity and specific yield of unconfined aquifers.</td>
<td>Fetter Chapter 4.6, 4.8</td>
</tr>
<tr>
<td>8</td>
<td>Equations of groundwater flow; Analytical solutions of one-dimensional groundwater flow.</td>
<td>Fetter Chapter 5.7</td>
</tr>
<tr>
<td>9</td>
<td>Groundwater flow patterns; Groundwater and geology (effective stress, groundwater flow and faulting).</td>
<td>Fetter Chapter 8.6, class notes</td>
</tr>
<tr>
<td>10</td>
<td>Land subsidence; Groundwater and geotechnical engineering; Flood control.</td>
<td>Class notes</td>
</tr>
<tr>
<td>11</td>
<td>Sea water intrusion.</td>
<td>Fetter Chapter 9.7-9.8</td>
</tr>
<tr>
<td>12</td>
<td>Steady-state flow to a well (the Thiem solution).</td>
<td>Fetter Chapter 7.4.2</td>
</tr>
<tr>
<td>13</td>
<td>Transient flow to a well: the Theis method and pumping test.</td>
<td>Fetter Chapter 7.3</td>
</tr>
<tr>
<td>14</td>
<td>Transient flow to a well in leaky confined and unconfined aquifer and slug test.</td>
<td>Fetter Chapter 7.4.4</td>
</tr>
</tbody>
</table>

Other Pertinent Course Information

- Lab 1: Water budget and base flow calculations.
- Lab 2: Map groundwater head distribution and groundwater flow magnitude and direction.
- Lab 3: Apply Darcy's law for different sets of groundwater flow problems.
- Lab 4: Identification and characterization of aquifers, aquitards and aquicludes.
- Lab 5: Illustration of aquifer storativity.
- Lab 6: Calculation of total stress, effective stress, and neutral stress.
- Lab 7: Study land subsidence of Houston, TX; Shanghai, China; and Mexico City, Mexico.
- Lab 8: Study seawater intrusion in Galveston, TX and California coast.
- Lab 9: Case studies of cones of depression in Ogallala aquifer, USA and North China Plain.
- Lab 10: Case study of pumping test interpretation.
- Lab 11: Case study of slug test interpretation.
- Lab 12: Case study of horizontal well and hydraulic fracturing

References:

Americans with Disabilities Act (ADA)

The Americans with Disabilities Act (ADA) is a federal anti-discrimination statute that provides comprehensive civil rights protection for persons with disabilities. Among other things, this legislation requires that all students with disabilities be guaranteed a learning environment that provides for reasonable accommodation of their disabilities. If you believe you have a disability requiring an accommodation, please contact Disability Services, in Cain Hall, Room B118, or call 845-1637. For additional information visit http://disability.tamu.edu

Academic Integrity

For additional information please visit: http://aggiehonor.tamu.edu

"An Aggie does not lie, cheat, or steal, or tolerate those who do."
Texas A&M University
Departmental Request for a New Course
Undergraduate • Graduate • Professional
• Submit original form and attach a course syllabus.

1. Request submitted by (Department or Program Name): Aerospace Engineering

2. Course prefix, number and complete title of course: MSEN 641 Plasticity Theory

3. Catalog course description (not to exceed 50 words): Theory of plastic yield and flow of two and three-dimensional bodies; classical plasticity theories, unified viscoplastic theories, numerical considerations; applications and comparisons of theory to experiment.

4. Prerequisite(s): MEMA 601 or MEMA 602

Cross-listed with: MEMA 641

Stacked with:

Cross-listed courses require the signature of both department heads.

5. Is this a variable credit course? □ Yes □ No If yes, from ________ to ________

6. Is this a repeatable course? □ Yes □ No

Will this course be repeated within the same semester? □ Yes □ No If yes, this course may be taken ________ times.

7. This course will be:

a. required for students enrolled in the following degree program(s) (e.g., B.A. in history)

b. an elective for students enrolled in the following degree program(s) (e.g., M.S., Ph.D. in geography) graduate students in aerospace engineering, materials science or related fields

8. If other departments are teaching or are responsible for related subject matter, the course must be coordinated with these departments. Attach approval letters.

9. Prefix Course # Title (excluding punctuation) M S E N 6 4 1 P L A S T I C I T Y T H E O R Y

<table>
<thead>
<tr>
<th>Lect.</th>
<th>Lab</th>
<th>SCH</th>
<th>CIP and Fund Code</th>
<th>Admin. Unit</th>
<th>Acad. Year</th>
<th>FICE Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Approval recommended by:

John E. Hurtado, AERO
Department Head or Program Chair (Type Name & Sign) 11-19-13

Ibrahim Kamara, MSIE
Department Head or Program Chair (Type Name & Sign) 11-25-13

Submitted to Coordinating Board by:

Associate Director, Curricular Services

John Criscione
Chair, College Review Committee 12/17/13

Mark J. Zorali
Chair, GC or USC 1-14-14

Questions regarding this form should be directed to Sandra Williams at 845-8201 or sandra.williams@tamu.edu.
Curricular Services – 3/10
Course title and number: MSEN 641/ MEMA 641 Plasticity Theory
Term: Spring 2014
Meeting times and location: TR 9:35-10:50, HRBB 105

Course Description and Prerequisites

Theory of plastic yield and flow of two and three-dimensional bodies; classical plasticity theories, unified viscoplastic theories, numerical considerations; applications and comparisons of theory to experiment.

Prerequisites: MEMA 601 or MEMA 602

Students should have an undergraduate materials science course and graduate course AERO 605/MEMA 601 Theory of Elasticity or MEMA 602 Advanced Materials Science and Engineering before enrolling.

Learning Outcomes or Course Objectives

1) Understand the role that dislocations play in the macroscopic yield and flow of metals.
2) Understand the components of classical, rate independent plasticity: the yield function, consistency condition, and hardening rule.
3) Be able to formulate and analytically solve three boundary value problems: torsion of bars, bending of beams, and an internally pressurized cylinder.
4) Understand the thermodynamics of plasticity including the use of internal state variables to represent microstructures.
5) Understand the structure of unified viscoplastic constitutive equations used for high temperature applications including transient creep, steady state creep, stress relaxation, and cyclic loading.
6) Understand how the yield surface of polycrystals can be constructed using the yield surfaces of the constituent grains.
7) Understand how plasticity due to phase transformation differs from dislocation-based plasticity.
Instructor Information

Name: James G. Boyd
Telephone: 979-458-0419
Email address: jgboyd@aero.tamu.edu
Office hours: Open and by appointment
Office location: HRBB 741C

Time and Location:
TR 9:35-10:50, HRBB 105

Textbook and/or Resource Material

Plasticity Theory, by Jacob Lubliner

Grading Policies

<table>
<thead>
<tr>
<th>Grade</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homework</td>
<td>40%</td>
</tr>
<tr>
<td>Exam 1</td>
<td>20%</td>
</tr>
<tr>
<td>Exam 2</td>
<td>20%</td>
</tr>
<tr>
<td>Final exam</td>
<td>20%</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
</tr>
</tbody>
</table>

Grading Scale

A 90 – 100%
B 80 – 89%
C 70 – 79%
D 60 – 69%
F below 60%

Course Topics, Calendar of Activities, Major Assignment Dates

Subjects that will be covered:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Number of Lectures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Review of elasticity</td>
<td>2</td>
</tr>
<tr>
<td>Physics of plasticity</td>
<td>3</td>
</tr>
<tr>
<td>Classical plasticity</td>
<td>5</td>
</tr>
<tr>
<td>Boundary value problems</td>
<td>3</td>
</tr>
<tr>
<td>Modern plasticity, internal variables</td>
<td>3</td>
</tr>
<tr>
<td>High temperature plasticity</td>
<td>4</td>
</tr>
<tr>
<td>Anisotropy</td>
<td>1</td>
</tr>
<tr>
<td>Single crystal plasticity</td>
<td>4</td>
</tr>
<tr>
<td>Transformation plasticity, shape memory</td>
<td>2</td>
</tr>
<tr>
<td>Exams</td>
<td>3 (2 + final exam)</td>
</tr>
<tr>
<td>TOTAL</td>
<td>30</td>
</tr>
</tbody>
</table>
Exam Dates
Exam 1: March 4
Exam 2: April 17

Final Exam Schedule:
The final exam is scheduled for Friday, May 2, 12:30 – 2:30am.

Other Pertinent Course Information

Attendance: The instructor has no attendance requirement for regular lectures. However, makeup exams will be given only for University excused absences. For additional information, including University excused absences, visit the student rules website on attendance: http://student-rules.tamu.edu/rule07.

Electronic Noise: Pagers, telephones, watches, and all other electronic noise making devices are not allowed to make noise during the lecture.

Food and Drink: You may not eat or drink in class or in lab.

Americans with Disabilities Act (ADA)
The Americans with Disabilities Act (ADA) is a federal anti-discrimination statute that provides comprehensive civil rights protection for persons with disabilities. Among other things, this legislation requires that all students with disabilities be guaranteed a learning environment that provides for reasonable accommodation of their disabilities. If you believe you have a disability requiring an accommodation, please contact Disability Services, in Cain Hall, Room B118, or call 845-1637. For additional information visit http://disability.tamu.edu

Academic Integrity
For additional information please visit: http://aggiehonor.tamu.edu/

"An Aggie does not lie, cheat, or steal, or tolerate those who do."

It is the responsibility of students and instructors to help maintain scholastic integrity at the University by refusing to participate in or tolerate scholastic dishonesty. (Student Rule 20. Scholastic Dishonesty, http://student-rules.tamu.edu) An excerpt from the Philosophy and Rational section states, "Apathy or acquiescence in the presence of academic dishonesty is not a neutral act – failure to confront and deter it will reinforce, perpetuate, and enlarge the scope of such misconduct. Academic dishonesty is the most corrosive force in the academic life of a university."