Graduate Council Report
October 6, 2011

Special Consideration Item:
Graduate Council approved the College of Agriculture and Life Sciences proposed PhD in Plant Breeding – Distance.
Texas A&M University
New Certificate, Bachelors, Masters, or Doctoral Program
* Proposal Checklist *

Requested by the Department or Unit of: SCSC and HORT

Program Type, Level, Designation, Title, Description, Hours
Program Type Certificate Program x Degree Program x
Program Level Undergrad Certificate x Grad Certificate x Bachelor x Master x Doctoral x
Degree Designation (i.e., BS, BA, MA, MS, MAg, Med, PhD, EdD, etc.) Ph.D.
Title of proposed program: Ph.D. in Plant Breeding Distance
Proposed CIP Code (if known): 01 1104 00

Brief program description (provide a catalog description for undergraduate and graduate certificates):
The Ph.D. in Plant Breeding Distance is a program designed to provide students with an understanding of the science of plant breeding to prepare the student for a career in improving food, feed, fiber, biostock, and recreation/aesthetic plant production across the globe. This program seeks to provide quality education and research training within well equipped, well managed private companies to CGIAR Centers that address food, feed, and fiber needs in the poorest areas of the world. The program is comprised of 64 SCH of coursework and is identical in rigor and expectations of the on-campus delivery.

Minimum program semester credit hours (SCH) Certificates - 12 hours* Bachelors - 120 hours Masters - 30 hours

Proposed program hours: - 64 post M.S.

*12 hours minimum to appear on transcript

Off-Campus or Distance Delivery
% of Program a student can take off-campus or through Distance Education Program Start Date SACS Approval** When Provost needs to inform SACS

☐ 25% — Notification Only —

☐ 50% — Approval Required 6 months before first day of program

☐ 80% — Approval Required 6 months before first day of program

x 100% January 2013 Approval Required 6 months before first day of program

**Notification letter arranged through the Assistant Provost and sent by TAMU President.

Program Delivery Mode
☐ On-campus —

☐ Broadcast / TTVN —

☐ Specific off-campus location*** —

x Distance Education / Internet In-State x Out-of-State x Start Date January 2013

Out-of-Country Will this program be offered with another institution? Yes ☐ No x
If yes, contact Assistant Provost for additional reporting requirements.

***Is this an approved SACS location? Yes ☐ No ☐ If no, a program prospectus must be sent to SACS.

Approved locations as of September 2009: TAMU-Galveston, TAMU-Qatar, University Center-The Woodlands, Dubai (EMBA)

Program Funding
Has program funding been finalized at the department or college level? Yes x No ☐
If no, explain or attach budget: ______

Page 1 06/07/2010
Will new costs for the first five years of the program be under $2 million? Yes ☑ No ☐
If new costs exceed $2 million, coordinating board approval is required.
Submitted by (Contact Person):

Name

Title

Email

Phone

Certification Statement

By signing below, the Dean of the College certifies the proposed program complies with coordinating board standards. If the program is delivered through Distance Education, the Dean of the College certifies that they are following the Principles of Good Practice for Academic Degree and Certificate Programs and Credit Courses Offered Electronically.

Use additional signature lines if program is between three or more departments or colleges.

Signature, Department Head or Interdisciplinary Program Chair

Typed or Printed Name

Chair, College Review Committee

Date

Dean of College

OCT 06 2011

Chair, University Curriculum Committee or Graduate Council

Signature, Department Head or Interdisciplinary Program Chair (if joint program)

Typed or Printed Name

Chair, College Review Committee

Date

Dean of College

Date

Chair, University Curriculum Committee or Graduate Council

Date

Additional Approves Required: Faculty Senate and President.
Submitted by (Contact Person):
Wayne Smith
Name
Professor and Associate Head
Title
cwsmith@tamu.edu
Email
845-3450
Phone

Certification Statement
By signing below, the Dean of the College certifies the proposed program complies with coordinating board standards. If the program is delivered through Distance Education, the Dean of the College certifies that they are following the Principles of Good Practice for Academic Degree and Certificate Programs and Credit Courses Offered Electronically.

Use additional signature lines if program is between three or more departments or colleges.

David Baltensperge 9/22/11
Signature, Department Head or Interdisciplinary Program Chair
Typed or Printed Name

Leland S. Pierson III
Signature, Department Head or Interdisciplinary Program Chair (if joint program)
Typed or Printed Name

Chair, College Review Committee
Date

Dean of College
Date

Chair, University Curriculum Committee or Graduate Council
Date

Additional Approvals Required: Faculty Senate and President.
BACKGROUND & PROGRAM DESCRIPTION

The Ph.D. via distance in Plant Breeding will be located in the Departments of Soil and Crop Sciences, and Horticultural Sciences, within the College of Agriculture and Life Sciences. Both departments currently offer a Ph.D. in Plant Breeding on campus. The major characteristics of the proposal are [1] Extends current course offerings, [2] Requires no additional faculty employment, [3] Increases access to higher education to a new market niche, [4] Builds on an established base of students already taking on-campus courses, [5] Expands the national and international reputation and presence of Texas A&M University, and [6] Will be the first distance delivered Ph.D. degree in Plant Breeding among all Land Grant Universities in the United States. All distance learning students will be enrolled in the same classes as the on-campus students and all classes will be taught by the same professors with identical course material, homework, exams, etc. This distance Ph.D. in Plant Breeding takes advantage of Ph.D. scientists who are Graduate Faculty eligible and employed at national/multinational variety development companies or at International Agricultural Research Centers (CGIAR Centers) located around the world, e.g., CIMMYT in Mexico and IRRI in the Philippines. The Departments involved, and currently granting Ph.D. degrees in Plant Breeding, have long standing experience guiding graduate academic and research programs with the student’s research activities located away from campus at Texas AgriLife Research Centers (13) located across the state. This collaborative research guidance is and will be achieved through co-chairs of the committee, with the co-chair located at the research site also intimately involved in the academic life of the student and the co-chair located on-campus also intimately involved in the research life of the student. The Ph.D. distance degree proposed in this program is an extension of that philosophy.

The educational objectives of this proposal is to provide the opportunity to gain advanced degrees in Plant Breeding for [1] industry professionals within the U.S., who cannot come to the campus for classes but wish to continue their education and professional development while remaining employed, [2] international industry professionals and NGO professional individuals who wish to continue their education in the field of plant breeding but who cannot come to campus or cannot come for extended periods of time, or [3] industry leaders who want to improve their knowledge of plant breeding and genetics. Ample evidence exist for expanding the pool of well trained plant breeders whose career goals will be to alleviate the shortage of food, feed, fiber, and biofuel in a world of quickly expanding population. The proposed program will be unique not only in Texas but in the United States. At this date, there is not another university in the U.S. that offers a Ph.D. in Plant Breeding at a distance. Washington State University, Oregon State University, University of Nebraska, Auburn University, and Iowa State University offer general M.S.-NTO distance degrees in Agronomy or similar area. Iowa State University is the only university offering a distance M.S.-NTO in Plant breeding. The degree and protocol proposed herein is needed and will be unique to Texas A&M University.

The Ph.D. in Plant Breeding distance degree will have the same requirements as outlined in the TAMU Graduate Catalog, including a minimum of 64 approved credit hours post M.S. degree work as directed by a graduate committee approved by the Office of Graduate Studies at Texas A&M University. This 64 SCH will include one hour of seminar where the student presents their Ph.D. research results via distance delivery, e.g. TTVN, in an open forum that includes on-campus faculty and graduate students. A dissertation on original research will be required. All course materials used
in the Distance Plant Breeding degree program have been and will be developed by the faculty responsible for each individual course. These materials provide the same content ideas and processes that are examined in resident classes taught on campus. The graduate faculty member teaching the graduate course is solely responsible for teaching, monitoring, and evaluating all course activities and assigning grades. The professor of record for all 691 research credit hours associated with the Ph.D. distance candidates will be assigned to the campus co-chair. Again, this program will be the first to take advantage of Ph.D. scientists (plant breeders) who are Graduate Faculty eligible and employed at national/multinational variety development companies or at International Agricultural Research Centers (CGIAR Centers), e.g., CIMMYT in Mexico and IRRI in the Philippines.

The proposed implementation date is January 2013.

NEED

Employment Opportunities

The passage of the 1994 U.S. Plant Variety Protection Act, rulings by U.S. courts that genes, traits, and varieties are patentable, and improved intellectual property laws in the U.S. and other countries have spurred the creation of national and multinational variety development companies competing for graduates with plant breeding training. Many of these political events along with the mandate of the CGIAR to eradicate hunger around the world has created or supported the need for plant breeders. Examples of demand are:

Monsanto Company web site (http://jobs.monsanto.com/research) listed the following on 2 September 2011: Plant Breeding specific: 10 position announcements, four in the U.S., two in Argentina, two in China, one in Australia, and one in Italy. These mostly would require a Ph.D.

Related, i.e., a Plant Breeding Ph.D. degree would be competitive: 43 position announcements, 26 in the U.S. and 17 in other countries.

Syngenta Company web site (http://jobs.syngenta.com/go/Research-Scientist-Jobs/265758/) listed the following on 2 September 2011: Plant Breeding specific: two U.S. positions, one requiring a Ph.D. and one requiring a minimum of an M.S. degree.

Related, i.e., a Plant Breeding degree would be competitive: nine U.S. positions.

Several leaders in industry and at CGIAR Centers around the world were asked about the desirability of a Distance Plant Breeding degree program. Only positive responses were received with selected quotes below.

Dr. Cynthia Green, Plant Breeding Lead, Monsanto: This sounds exciting. We have recently been discussing the need for development opportunities for current cotton breeding employees that desire advancement...do not have exact numbers but feel we would regularly have individuals suited for this distance degree.

Dr. Richard Sheetz, Plant Breeding Lead, Monsanto: I have been put on a team at Monsanto looking into ways to further the breeding careers of individuals currently in the Associate or Assistant breeding roles...I will definitely pass this along.

Dr. David Becker, Plant Breeding Management, BayerCropScience: We have averaged two to four people attending MS or PhD level courses while on full-time job status (just) within U.S. cotton breeding...I foresee this to continue or increase, so we may have two to three employees per year interested (in TAMU’s distant plant breeding program).
Dr. Steve Calhoun, International Cotton and Rice Breeding Manager, BayerCropScience: I really like this idea...lot of people (in our organization) reach a career plateau because they lack a certain piece of paper...but too expensive to quit work and go back to school...can think of at least 5 inside Bayer in the U.S...4-6 in India...couple in Brazil.

Dr. Geoffrey Thomas, R&D Director, MayAgro Seed Corp: I believe such a course (program) would be very useful, especially to countries in Africa, the Middle East, East Europe, and Central Asia...would recommend that such a (program) have 4-8 weeks on the campus of Texas A&M...as R&D director of a large Turkish Seed company...over 30 staff...breeding 7 species...I have a great need for such a (program).

Dr. Melaku Gedil, Head and Molecular Breeder, Bioscience Center, International Institute for Tropical Agriculture (CGIAR-IITA), Ibadan, Nigeria: I am interested in the program...have three potential students...I have co-supervised graduate students at the University of Ibadan.

Projected Enrollment
Potential enrollment is estimated to be 10 new Ph.D. students by the second year of the program. While the projected launch date is January 2013, some time will be needed to broadly advertise to make known the availability of the distance degree, and for potential distance graduate faculty members to identify students and for the student to gain admission to TAMU.

Existing State Programs
The proposed program will be unique not only in Texas but in the United States. At this date, there is not another university in the U.S. that offers a Ph.D. in Plant Breeding at a distance. Washington State University, Oregon State University, University of Nebraska, Auburn University, and Iowa State University offer general M.S.-NTO distance degrees in Agronomy or similar area. Iowa State University is the only university offering a distance M.S.-NTO in Plant breeding. The degree and protocol proposed herein is needed and will be unique to Texas A&M University.

QUALITY & RESOURCES
Faculty
Nine tenured or tenure track professors in Soil and Crop Sciences have developed or are converting their campus based classes to distance deliverable classes. Distance courses current available in Molecular and Environmental Plant Sciences (2), Statistics (3), Plant Pathology and Microbiology (2), Entomology (1), and Agricultural Economics (1) are appropriate for students seeking the Ph.D. via distance in Plant Breeding. Additional distant courses that could be valuable to Ph.D. candidates in Plant Breeding, especially those who manage people, are available currently in Educational Administration and Human Resources (5).

Program Administration
The Department Heads in Soil and Crop Sciences and Horticultural Sciences are responsible for the academic offerings within their respective departments. The daily management of the graduate programs in each department is in the purview of the Associate Heads for Academic Programs. The contact person for the Ph.D. in Plant Breeding Distance Program is Wayne Smith, Associate Head, Department of Soil and Crop Sciences. No changes in his areas of responsibilities are anticipated at the initial offering.
Other Personnel: None
Graduate Assistants: NA
Supplies, Materials
Distance students in this program will complete the same work as students in the resident sections of the courses. Text books are available for purchase via the internet and all other course materials will be available within each course internet based classroom.
Library
Distant graduate students will have access to many of the services of the University library with ever increasing electronic data bases and other electronic services. Distance Plant Breeding degree program students will be informed fully on how to access the TAMU library system and provide initial information about how to access within each syllabus. Off-campus access to electronic holdings is available by NetID and password to enrolled students.
Equipment, Facilities: No new equipment or facilities are requested.
Clinical/Internship Sites: NA
Accreditation: NA
Educator Certification Program: Rated ‘Accredited’ by the State Board of Educator Certification

COSTS & FUNDING SOURCES

<table>
<thead>
<tr>
<th>FIVE-YEAR COSTS</th>
<th>SOURCES OF FUNDING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faculty</td>
<td>Formula Income $ 409,218</td>
</tr>
<tr>
<td></td>
<td>Other State Funding $ 174,000</td>
</tr>
<tr>
<td>Program Administration</td>
<td>Reallocation $ 242,000</td>
</tr>
<tr>
<td>Graduate Assistants</td>
<td>Federal Funding</td>
</tr>
<tr>
<td>Supplies & Materials</td>
<td>Other Funding</td>
</tr>
<tr>
<td>Library & IT Resources</td>
<td></td>
</tr>
<tr>
<td>Equipment, Facilities</td>
<td>Estimated 5-year Revenues $ 825,218</td>
</tr>
<tr>
<td>Other</td>
<td></td>
</tr>
<tr>
<td>Estimated 5-Year Costs</td>
<td>$ 398,400</td>
</tr>
</tbody>
</table>

*Reallocation of Professorial time.

The Chief Executive Officer of the institution has certified that the institution will have funds sufficient to support the proposed program. (Inst) is committing more than 50 percent of the funds from existing fund sources towards the projected costs over the first five years.

Estimated formula funding generated in years three through five of the proposed program would total $ 409,218.
Texas Higher Education Coordinating Board
Distance Education Doctoral Degree Proposal

Directions: An institution shall use this form to propose a new doctoral degree program. In completing the form, the institution should refer to Texas Administrative Code (TAC) 5.46 relating to Criteria for New Doctoral Programs. This form requires signatures of (1) the Chief Executive Officer, certifying adequacy of funding for the new program; (2) a member of the Board of Regents (or designee), certifying Board approval; and (3) if applicable, a member of the Board of regents or (designee), certifying that criteria have been met for Coordinating Board staff-level approval.

Note: If an institution does not have Preliminary Authority for the proposed doctoral program, it must first submit a separate request for Preliminary Authority. That request shall address criteria set in TAC Section 5.24 (b).

Information: Contact the Division of Academic Affairs and Research at 512/427-6200.

Administrative Information

1. Institution: Texas A&M University

2. Program Name – Show how the program would appear on the Coordinating Board’s program inventory [e.g., Doctor of Philosophy (Ph.D.) in Electrical Engineering]. Doctor of Philosophy (Ph.D.) in Plant Breeding

3. Proposed CIP Code: 01.1104.00

4. Program Description – Describe the program and the educational objectives.

This Proposal requests that Texas A&M University receive authority to deliver the Ph.D. in Plant Breeding electronically via the internet. Offering an on-line capability will allow Texas A&M University to train graduate students located at research facilities around the world, which will contribute to the alleviation of world food, feed, and fiber deficits.

Two such generalized research organizations are the International Agricultural Research Centers located in 14 countries and national/internationally structured agricultural variety development companies. The Departments of Soil and Crop Sciences and Horticultural Sciences currently offer this degree as a conventional, on-campus degree, and the Interdisciplinary Programs of Molecular and Environmental Plant Sciences and Genetics direct graduate students who often enter the plant breeding profession.

The major characteristics of the proposal are [1] Extends current course offerings, [2] Requires no additional faculty employment, [3] Increases access to higher education to a new market niche, [4] Builds on an established base of students already taking on-campus courses, [5] Expands the national and international reputation and presence of Texas A&M University, and [6] Will be the first distance delivered Ph.D. degree in Plant Breeding among all Land Grant Universities in the United States. The Ph.D. in Plant Breeding Distance graduate degree is an extension of the current Plant Breeding graduate degree offered at TAMU. This program is an extension of protocols in place where Ph.D. students conduct their research guided by a committee co-chair located at one of the Texas AgriLife Research and Extension Centers located around the state.
5. **Administrative Unit** – Identify where the program would fit within the organizational structure of the institution (e.g., *The Department of Electrical Engineering within the College of Engineering*). The Ph.D. in Plant Breeding Distance would reside in the Department of Soil and Crop Sciences, and the Department of Horticultural Sciences.

6. **Proposed Implementation Date** – Report the first semester and year that students would enter the program. January, 2013.

7. **Contact Person** – Provide contact information for the person who can answer specific questions about the program.

 Name: Wayne Smith

 Title: Professor and Associate Head, SCSC

 E-mail: cwsmith@tamu.edu

 Phone: (979) 845-3450
REQUEST TO OFFER EXISTING DEGREE PROGRAM VIA DISTANCE

Texas A&M University

Texas A&M University is seeking permission to offer the following Doctor of Philosophy in Plant Breeding via distance education (electronic delivery) beginning 1 January 2013.

Format for Distance Education Program Request via Electronic Delivery

For each of the following components, include the requested information as well as any differences between the on-campus program and the proposed distance education program.

I. Summary of the Request

This Proposal requests that Texas A&M University receive authority to deliver the Ph.D. degree in Plant Breeding electronically via the internet. Offering an on-line capability will allow Texas A&M University to train graduate students located at research facilities around the world. Two such generalized research organizations are the International Agricultural Research Centers located in 14 countries and national/internationally structured agricultural variety development companies. The Departments of Soil and Crop Sciences and Horticultural Sciences currently offer the Ph.D. in Plant Breeding as a conventional, on-campus degree, and the Interdisciplinary Programs of Genetics and Molecular and Environmental Plant Sciences directs graduate students who often enter the plant breeding profession.

The major characteristics of the proposal:

- Extends current course offerings
- Requires employment of no additional faculty but increases the number of TAMU recognized Graduate Faculty, both national and internationally
- Increases access to higher education to a new market niche
- Builds on an established base of students already taking on-campus courses
- Extends experience and expertise of Texas AgriLife faculty in mentoring Ph.D. students who are guided by an advisory committee co-chair on campus and a co-chair located at a Texas AgriLife Research and Extension Center where the student’s research is conducted
- Expands the national and international reputation and presence of Texas A&M University
- Makes available the first Ph.D. degree in Plant Breeding among all Land Grant Universities in the United States.

The Plant Breeding Distance graduate degree are an extension of the current Ph.D. in Plant Breeding graduate degree offered at TAMU. All distance learning students will be enrolled in the same classes as the on-campus students and all classes will be taught by the same professors with identical course material, homework, exams, etc. The Departments involved, and currently granting Ph.D. in Plant Breeding degrees, have long standing experience guiding graduate academic and research programs with the student located away from campus through Texas AgriLife Research Centers (13) located across the state during the research phase of their graduate program. This collaborative research guidance is achieved through co-chairs of the committee, with the co-chair located at the research site also intimately involved in the academic life of the student and the co-chair located on-campus also

3
intimately involved in the research life of the student. The Ph.D. distance degree proposed in this program are an extension of that philosophy.

A Degree program area: Agricultural and Horticultural Plant Breeding
B Degree title designation (e.g., BS, MS, etc.) Ph.D. in Plant Breeding
C Program delivery

The program will be primarily delivered through the university learning management system, elearning.tamu.edu (Blackboard). This online delivery system has ease of development with modular design, ability to access instructional materials, assignment submission capabilities, Respondus quiz and testing features, and a variety of communication strategies. Content delivery will vary by class, depending on material to be presented but will include Streaming Media, PowerPoint (written format with voice over), video lectures, assignments, group projects, bulletin boards, chat rooms, reading assignments, virtual classrooms, and PDF handouts. Other distribution venues such as digital resources, email, facsimiles, etc. may be used. Any media will be encouraged that promotes educational interaction between professor and student. The Department of Soil and Crop Sciences and the Department of Horticultural Sciences will hire graduate students with technical expertise to support course development. Instructional Material Services offer professional development workshops for faculty to assist with course conversion.

Each distance student will be encouraged to spend time on campus at College Station. Since there will be many in this program where that will not be possible, e.g., a distance student at the International Rice Research Institute in the Philippines, such time will not be mandated but encouraged.

Graduate Advisor Committees for Ph.D. distance students will be co-chaired by a member of the TAMU Graduate Faculty on campus and a member of the TAMU Graduate Faculty at the distance site. The distant site co-chair is mandatory because that co-chair must provide for and guide the original research required of a Ph.D. degree.

The delivery of distance Plant Breeding and related courses will not impact the knowledge imparted. The Plant Breeding Distance Ph.D. degree will be an extension of the current Ph.D. in Plant Breeding graduate degree offered at TAMU. All distance learning students will be enrolled in the same classes as the on-campus students and all classes will be taught by the same professors with identical course material, homework, exams, etc.

II. Reason for Request

World population doubled from three to six billion people between 1960 and 1999, and is expected to grow to nine billion by 2050. Providing food, feed, fiber, and biofuel for this ever
increasing population is a significant challenge given no meaningful addition of new arable lands, changing weather patterns, and decreasing quantity and quality of fresh water available for agricultural production (Figure 1). Development of improved and superior crop varieties by plant breeders is the primary mechanism for meeting this challenge. Texas A&M University is one of the top tier U.S. universities training future plant breeders to meet this challenge and should expand that effort worldwide through distance delivery.

Figure 1. Changes in productivity of grains and oilseed crops since 1970 (from Plant Science 179:645-652).

Several authors, e.g., Guner and Wehner (Crop Science 43:1938) and Bliss (Crop Science 47:250), have reported that the number of graduate students trained in Plant Breeding has declined with a corresponding decline in the size of plant breeding programs at many U.S. universities. By 2006, seven Land Grant Universities, including Texas A&M University, accounted for over 50% of graduate degrees in Plant Breeding. Concomitant with this decrease in LGU capacity, the passage of the 1994 U.S. Plant Variety Protection Act, rulings by U.S. courts that genes, traits, and varieties are patentable, and improved intellectual property laws in other countries spurred the creation of multinational variety development companies competing for graduates with plant breeding training. Many of the political events noted above combined with the growing or continuing mandate of the Consultative Group on International Agriculture Research Centers, CGIAR, to eradicate hunger around the world has created or supported the need for plant breeders. Texas A&M University can help fill the need for additional plant breeding expertise worldwide through the Ph.D. Plant Breeding distance degrees.

The National Association of Plant Breeders (NAPB) represents all aspects of the national plant breeding community; focuses on the state of the plant breeding community in its fullest definition including public sector plant breeders, private industry breeders, and plant breeders with non-government organizations. NAPB meets annually, recognizing outstanding plant breeders with awards, and advocating for issues relating to plant breeding in the political arena. The NAPB is an independent initiative of the Plant Breeding Coordinating Committee (PBCC) and serves as a forum for leadership, regarding issues, problems, and opportunities of long-term
strategic importance to the contribution of plant breeding to national goals. These organizations have identified distance education as a priority.

Many of the companies and CGIAR Centers with potential distance learner employees have Ph.D. level plant breeders in residence at the same location qualified and capable of mentoring graduate students. We have many of these already associated with SCSC, HORT, and MEPS either as adjunct faculty or at least as members of the TAMU Graduate Faculty. The Ph.D. distance degree proposed in this program is an extension of that protocol and experience.

The primary objectives of this proposal is to provide the opportunity to gain advanced degrees in Plant Breeding for [1] industry professionals within the U.S., who cannot come to the campus for classes but wish to continue their education and professional development while remaining employed, [2] international industry professionals and NGO professional individuals who wish to continue their education in the field of plant breeding but who cannot come to campus or cannot come for extended periods of time, or [3] industry leaders who want to improve their knowledge of plant breeding and genetics.

A Program need

As noted above, there is ample evidence of an expanding need for well trained plant breeders whose career goals will be to alleviate the shortage of food, feed, fiber, and biofuel in a world of quickly expanding population. The proposed program will be unique not only in Texas but in the United States. At this date, there is not another university in the U.S. that offers a Ph.D. in Plant Breeding at a distance. Washington State University, Oregon State University, University of Nebraska, Auburn University, and Iowa State University offer general M.S.-NTO distance degrees in Agronomy or similar area. Iowa State University is the only university offering a distance M.S.-NTO in Plant breeding. The degree and protocol proposed herein will be unique.

B Program demand

The passage of the 1994 U.S. Plant Variety Protection Act, rulings by U.S. courts that genes, traits, and varieties are patentable, and improved intellectual property laws in other countries have spurred the creation of national and multinational variety development companies competing for graduates with plant breeding training. Many of these political events along with the mandate of the CGIAR to eradicate hunger around the world has created or supported the need for plant breeders. Examples of demand are:

Monsanto Company web site (http://jobs.monsanto.com/research) listed the following on 2 September 2011:

Plant Breeding specific: 10 position announcements, four in the U.S., two in Argentina, two in China, one in Australia, and one in Italy. These mostly would require a Ph.D. but education for a Ph.D. in Plant Breeding requires an M.S. at TAMU.
Related, i.e., a Plant Breeding degree (M.S. or Ph.D.) would be competitive: 43 position announcements, 26 in the U.S. and 17 in other countries.

Syngenta Company web site (http://jobs.syngenta.com/go/Research-Scientist-Jobs/265758/) listed the following on 2 September 2011:

 Plant Breeding specific: two U.S. positions, one requiring a Ph.D. and one requiring an M.S. degree.

 Related, i.e., a Plant Breeding degree (M.S. or Ph.D.) would be competitive: nine U.S. positions.

Several leaders in industry and at CGIAR Centers around the world were asked about the desirability of a Distance Plant Breeding degree program. Only positive responses were received with selected quotes below.

Dr. Cynthia Green, Plant Breeding Lead, Monsanto: This sounds exciting. We have recently been discussing the need for development opportunities for current cotton breeding employees that desire advancement...do not have exact numbers but feel we would regularly have individuals suited for this distance degree.

Dr. Richard Sheetz, Plant Breeding Lead, Monsanto: I have been put on a team at Monsanto looking into ways to further the breeding careers of individuals currently in the Associate or Assistant breeding roles...I will definitely pass this along.

Dr. David Becker, Plant Breeding Management, BayerCropScience: We have averaged two to four people attending MS or PhD level courses while on full-time job status (just) within U.S. cotton breeding...I foresee this to continue or increase, so we may have two to three employees per year interested (in TAMU’s distant plant breeding program).

Dr. Steve Calhoun, International Cotton and Rice Breeding Manager, BayerCropScience: I really like this idea...lot of people (in our organization) reach a career plateau because they lack a certain piece of paper...but too expensive to quit work and go back to school...can think of at least 5 inside Bayer in the U.S....another 4-6 in India...couple in Brazil.

Dr. Geoffrey Thomas, R&D Director, MayAgro Seed Corp: I believe such a course (program) would be very useful, especially to countries in Africa, the Middle East, East Europe, and Central Asia...would recommend that such a (program) have 4-8 weeks on the campus of Texas A&M...as R&D director of a large Turkish Seed company...over 30 staff...breeding 7 species...I have a great need for such a (program).

Dr. Melaku Gedil, Head and Molecular Breeder, Bioscience Center, International Institute for Tropical Agriculture (CGIAR-IITA), Ibadan, Nigeria: I am interested in the program...have three potential students for the M.S. thesis option...I have co-supervised graduate students at the University of Ibadan.
C Program’s role

Texas A&M University is dedicated to the discovery, development, communication, and application of knowledge in a wide range of academic and professional fields. Its mission of providing the highest quality undergraduate and graduate programs is inseparable from its mission of developing new understandings through research and creativity. It prepares students to assume roles in leadership, responsibility, and service to society. Texas A&M assumes as its historic trust the maintenance of freedom of inquiry and an intellectual environment nurturing the human mind and spirit. It welcomes and seeks to serve persons of all racial, ethnic, and geographic groups, women and men alike, as it addresses the needs of an increasingly diverse population and a global economy. In the twenty-first century, Texas A&M University seeks to assume a place of preeminence among public universities while respecting its history and traditions.

The distance Plant Breeding Ph.D. degree upholds the above mission statement of Texas A&M University. The proposed program not only seeks to deliver a high quality and rigorous educational program at the graduate level, but also to seek, identify, and nurture research and scientific discovery through the science of Plant Breeding across the globe. This program seeks to provide quality education and research training within well equipped, well managed private companies to CGIAR Centers that address food, feed, and fiber needs in the poorest areas of the world. This program more fully makes graduate education in plant breeding from Texas A&M available regardless of borders, race, or gender.

III. Program Description

A Program construction

Admissions: All students admitted to graduate classes in a Ph.D. degree program in Plant Breeding (PLBR) at TAMU, whether on campus or through this proposed Distance Plant Breeding program must be admitted as a Ph.D. student (G8) or as a post-baccalaureate, non-degree seeking student (G6). Admission as a G8 or G6 student requires that the student complete the application for graduate admission, submit transcripts of baccalaureate work, and submit three letters of recommendation. If the applicant is a foreign national then they must meet the minimum English language requirement to be verified in English through the verbal portion of the GRE or other standardized exams such as the TOEFL. The Distance Plant Breeding degree program would require students entering as a G6 to have the necessary prerequisites for any courses in which the student enrolls. As indicated in the TAMU graduate catalogue, students may apply a maximum of 12 semester credit hours to an advanced degree when the hours are taken while in the G6 classification, if the student can meet all requirements for admission to the master’s program, and if SCSC and HORT approves the applications of any or all of the courses taken while the student is in the G6 status. However, the departments are under no obligation to allow the student to apply any of the G6 hours toward the Ph.D. in Plant Breeding. All students, distant or resident, applying for admission in Plant Breeding must apply and meet all of the requirements for admission as set forth by the University, the College, SCSC, and
HORT, including English language verification. However, they will not be required to meet English language certification.

The Ph.D. Plant Breeding distance degree will have the same requirements as outlined in the TAMU Graduate Catalog, including a minimum of 64 hours post M.S. work composed of course SCH and 691 Research and Dissertation, including one hour of seminar where the student presents their Ph.D. research results through distance media in an open forum that includes on-campus faculty and graduate students. The Ph.D. requires original research, a written dissertation that will be submitted to the TAMU Thesis Clerk, and a defense of the research.

All course materials used in the Distance Plant Breeding degree program have been and will be developed by the faculty responsible for each individual course. These materials provide the same content ideas and processes that are examined in resident classes taught on campus. The graduate faculty member teaching the graduate course is solely responsible for teaching, monitoring, and evaluating all course activities and assigning grades. The professor of record for all 691 research credit hours associated with the Ph.D. distance candidates will be assigned to the campus co-chair.

Program specific courses currently available (CA) or under development (UD) for a Spring 2013 launch of the Ph.D. in Plant Breeding distance delivery.

<table>
<thead>
<tr>
<th>Course #</th>
<th>Course name</th>
<th>SCH</th>
<th>Professor</th>
<th>Functionality</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCSC 304</td>
<td>Plant Breeding and Genetics</td>
<td>3</td>
<td>Hague</td>
<td>UD</td>
</tr>
<tr>
<td>SCSC 306</td>
<td>Grain, Fiber, and Oilseed Crops</td>
<td>3</td>
<td>Smith</td>
<td>UD</td>
</tr>
<tr>
<td>SCSC 422</td>
<td>Soil Fertility</td>
<td>3</td>
<td>Hons</td>
<td>CA</td>
</tr>
<tr>
<td>SCSC 613</td>
<td>Ethics in International Agriculture</td>
<td>3</td>
<td>Cralle</td>
<td>CA</td>
</tr>
<tr>
<td>SCSC 641</td>
<td>Plant Breeding I</td>
<td>3</td>
<td>Smith</td>
<td>CA</td>
</tr>
<tr>
<td>SCSC 642</td>
<td>Plant Breeding II</td>
<td>3</td>
<td>Rooney</td>
<td>UD</td>
</tr>
<tr>
<td>SCSC 643</td>
<td>Quantitative Genetics in Plant Breeding</td>
<td>3</td>
<td>Murray</td>
<td>UD</td>
</tr>
<tr>
<td>SCSC 654</td>
<td>Genomic Analysis</td>
<td>3</td>
<td>Zhang</td>
<td>UD</td>
</tr>
<tr>
<td>SCSC 660</td>
<td>Experimental Designs in Agronomy</td>
<td>3</td>
<td>Ibrahim</td>
<td>UD</td>
</tr>
<tr>
<td>MEPS 601</td>
<td>The Physiology of Plants</td>
<td>3</td>
<td>Hays</td>
<td>UD</td>
</tr>
<tr>
<td>MEPS 605</td>
<td>Plant Biochemistry</td>
<td>3</td>
<td>Koiva</td>
<td>UD</td>
</tr>
<tr>
<td>STAT 651</td>
<td>Statistics in Research I</td>
<td>3</td>
<td>varies</td>
<td>CA</td>
</tr>
<tr>
<td>STAT 652</td>
<td>Statistics in Research II</td>
<td>3</td>
<td>varies</td>
<td>CA</td>
</tr>
<tr>
<td>STAT 653</td>
<td>Statistics in Research III</td>
<td>3</td>
<td>varies</td>
<td>CA</td>
</tr>
<tr>
<td>PLPA 603</td>
<td>Plant Disease Management</td>
<td>3</td>
<td>Starr</td>
<td>CA</td>
</tr>
<tr>
<td>PLPA 689</td>
<td>Genomic Informatics</td>
<td>3</td>
<td>Yuan</td>
<td>UD</td>
</tr>
<tr>
<td>ENTO 402</td>
<td>Field Crop Insects</td>
<td>3</td>
<td>Vinson</td>
<td>CA</td>
</tr>
<tr>
<td>AGEC 314</td>
<td>Marketing Agricultural & Food Products</td>
<td>3</td>
<td>Higgins</td>
<td>CA</td>
</tr>
</tbody>
</table>

Student and Advisory Committee could include one or more such courses as the following, depending upon student's career goals and current situation

<table>
<thead>
<tr>
<th>Course #</th>
<th>Course name</th>
<th>SCH</th>
<th>Professor</th>
<th>Functionality</th>
</tr>
</thead>
<tbody>
<tr>
<td>EHRD 602</td>
<td>Critical Issues in Human Resource Develop.</td>
<td>3</td>
<td>Callahan</td>
<td>CA</td>
</tr>
<tr>
<td>EHRD 605</td>
<td>Principles & Practices of Leadership in HRD</td>
<td>3</td>
<td>Callahan</td>
<td>CA</td>
</tr>
<tr>
<td>EHRD 612</td>
<td>Training & Develop. in HR Development</td>
<td>3</td>
<td>Wang</td>
<td>CA</td>
</tr>
<tr>
<td>EHRD 613</td>
<td>Career Development in Human HR Develop.</td>
<td>3</td>
<td>Upton</td>
<td>CA</td>
</tr>
<tr>
<td>EHRD 625</td>
<td>Organizational Development and Perf. HRD</td>
<td>3</td>
<td>Wang</td>
<td>CA</td>
</tr>
</tbody>
</table>

Other web based courses are available at TAMU but those listed above make up the core of the plant breeding and agricultural science knowledge base for the proposed program. All graduate
degree plans are developed by the student and their Graduate Advisory Committee after thorough review of the student’s previous transcripts and their career goals.

B Administrative oversight

The Departments of Soil and Crop Sciences, and Horticultural Sciences are committed to the Principles of Good Practice, as required by THECB. The proposed program meets all of the specific criteria set forth by THECB and SACS as outlined below.

- Instruction must meet the quality standards which an institution requires of similar instruction offered on-campus to regularly enrolled students.
- Courses which offer either regular college credit or continuing Education Units must do so in accordance with the standards of the Commission on Colleges of the Southern Association of Colleges and Schools.
- Students must satisfy the same requirements for admission to the Institution, to the program of which the course is a part, and to the class/section itself, as are required of on-campus students.
- Faculty must be selected and evaluated by the same standards, review, and approval procedures used by the institution to select and evaluate faculty responsible for on-campus instruction. Institutions must provide training and support to enhance the added skills required of faculty teaching classes via instructional telecommunications.
- The instructor of record must participate in the delivery of instruction and evaluation of student progress.
- Providers of graduate-level instruction must be approved by the graduate faculty of the institution.
- All instruction must be administered under the authority of the same office or person administering the corresponding on-campus instruction. The supervision, monitoring, and evaluation processes for instructors must be comparable to those for on-campus instruction.
- Students must be provided academic support service— including academic advising, counseling, library and other learning resources, tutoring services, and financial aid—that are comparable to those available for on-campus students.
- Facilities (other than homes as instructional telecommunications reception sites) must be adequate for the purpose of delivering instruction which is comparable in quality to on-campus instruction.

Typical Course and Delivery: SCSC 643 Quantitative Genetics in Plant Breeding

**

Spring 2011 Quantitative Genetics in Plant Breeding Syllabus

SCSC 643/ Gene 643

When and where:
Tue. / Thur. 9:35 am – 10:50 am
Room 224, Heep Building

Instructor:
Dr. Seth C. Murray
Agronomy Field Lab – 111
Office (979) 845-3469, Lab (979) 845-4195
sethmurray@tamu.edu

Office hours:
To be decided in class.
(Appointments are always possible)

Website:
Lectures will be available via TAMU eLearning Vista http://elearning.tamu.edu/
Static website http://maizeandgenetics.tamu.edu/SethCMurray/Teaching.html

Course description:
Graduate education in quantitative genetics is critical for success as a modern scientific plant
breeder or geneticist. This course focuses on the understanding of current quantitative and
population genetics for plant breeding scientists. It covers both theory and applied approaches
and encourages you to reach across both commodity and discipline for interdisciplinary thinking
and creative approaches. The course attempts to translate modern scientific findings and theories
to application of traditional field breeding, molecular locus identification, and ultimately marker
assisted breeding. A lot of material and approaches are covered briefly to reinforce different
ways of viewing a few core concepts: population genetic diversity, gene effects, linkage, and
epistasis always mindful of the end goal: crop improvement.

Prerequisites:
Agro 642 Plant Breeding II in addition to a genetics course and a statistics course, or permission
of the instructor.

Textbooks and resource material listing:
There is no textbook required. Class notes, journal articles and presentations will be posted on
eLearning before we discuss them. Other pertinent material will be handed out in class. Software
required for this course includes ‘R’, Mapmaker, QTL cartographer, Structure and TASSEL, all
freely available.

Recommended helpful texts that were consulted in designing this class:
(New edition 2010 is now available, this is the book used by Dr. Rooney for SCSC 642.)

Limited, Essex England. (You really should own this book eventually.)

Sunderland, MA. (Pretty clear and well written book, will cover a lot of related topics that we
will not have time to.)

(A few interesting and relevant chapters.)

Associates, Sunderland, MA. (Nice reference but terminology and writing make it very difficult
to read in my opinion – if you take a summer institute in statistical genetics course it may be included freely.)

Ross, S. 2002. A First Course in Probability, sixth edition. Pearson Education, India. (There is a probability basis behind all phenomenon you will observe and all decisions you will make – this helps to understand this a little better.)

Schedule: There are 15 weeks in the semester and 12 sections below, relative emphasis of each section will be dictated by student interests.

Phenotypic Quantitative Genetics
(some understanding of molecular markers and techniques will be needed)

1: Introduction
- Syllabus overview
- Review: genetics concept, statistics concepts
- Quantitative genetics: historical overview, basic concepts
- Population genetics: historical overview, basic concepts
- Probability theory and statistics
- Introduction to R (http://www.r-project.org/)
- Introduction / review of molecular markers

2: Genetic models
- Genetic models for means
- Genetic models for variances

3: Genetic and environmental variances
- Genetic and environmental variances
- Heritability
- Yield stability
- Genetic gain from selection

4: Relationships and genetic diversity
- Covariances among relatives
- Heterosis
- Combining ability
- Inbreeding coefficients
- Genetic distance

5: Recurrent selection & linkage
- Synthetic populations
- Genetic drift
- Introgression
- Linkage and linkage disequilibrium (LD)

6: Epistasis
- Advanced epistasis
- Testers
- Hemizygosity
- Multiple trait selection
Molecular Quantitative Genetics

7: Bi-parental QTL mapping I.
- What is a QTL, why do they matter, and how do they connect to what we have covered?
- Genetic map construction
- Single marker analysis

8: Bi-parental QTL mapping II.
- Interval mapping, composite interval mapping
- Bayesian mapping
- Reality situations (tetraploid, half sib, unknown parents, etc.)

9: Association mapping
- Linkage disequilibrium (pt. II)
- Population structure, sub-structure, kinship, genetic distance
- TASSEL

10: Selection mapping (identifying temporal selection)
- Recurrent selection revisited

11: QTL MAS & genomic Selection
- Marker assisted selection in the phenotypic quantitative genetics model
- Genomic selection (the next big thing)

12: Putting it all together
- Team research project proposal presentations

Course rationale
I assume that in your previous courses you have learned how to be a good scientific plant breeder: how to identify and use genetic diversity, how to select, how to minimize GxE, how to evaluate field data, etc. The scientific goals of this class include reinforcing these previously learned concepts, adding relevant statistical and molecular technologies, relating recent scientific discoveries to plant breeding and finally helping you synthesize new concepts. A major focus is to help you understand the complexity of what is going on in the genome and how four main concepts: population genetic diversity, gene effects, linkage, and epistasis should affect how you breed and research plants (i.e. crop improvement). Internalizing these four concepts are the learning goals of the class, not how to use specific software or perform specific calculations (but this is good too).

In this course we will first review topics with traditional (phenotypic) quantitative genetics, both the basic theory of genetic models and application for estimating the effects within these genetic models, calculating heritability, and combining ability.

We will then cover molecular quantitative genetics as it applies to scientific breeding. Although some people stress a difference between ‘field’ and ‘molecular’ breeding, these are already integrated in many breeding programs. You can think of markers as one more way we are able to partition variance. Molecular breeding is not about spending all day in a lab genotyping, it is a tool providing biologically relevant information for selection and understanding of your organism of interest. If you went to a large corporate corn or soybean program today you would see marker assisted selection for known QTL on a massive scale being done by people who are field breeders. If you went to another large company you would see complex molecular genetics models predicting which crosses will be the most successful; this has let the breeders spend more time evaluating the best plants rather than simply making crosses to determine which plants are best. In public sector breeding you will also be much more successful understanding and even applying some of these same molecular techniques. The $100 genome sequence is coming quickly. In both the public and private sector molecular breeding is
becoming increasingly automated. To be most successful as a PhD breeder and/ or geneticist you must understand these tools and how to design a good experiment to take advantage of them (or at the very least understand the implications of others work). We no longer will be working with tens of markers on a few genes of interest; we will be working with thousands or millions that move towards predicting and designing the biology we want to see. Organizing, protecting, interpreting and using this data is a challenge in itself!

Learning objectives:

Thinking and analysis

1. Apply and summarize the higher Bloom’s Taxonomy thinking levels in all communication.
2. Apply computational thinking to problem solving.
3. Synthesize your discipline in a larger context and integrate concepts from other disciplines. (We will approach this by reading popular press articles at the beginning of class.)
4. Assess the limitations of an experiment or study, discriminate where biases might occur, and recommend how to correct these limitations.
5. Demonstrate an ability to deal with complexity. From scientific concepts, to learning new software, there are no easy answers.
6. Be able to explain and support all of your decisions

Professionalism and leadership. For many students it will be one of the last courses that you take before you enter your profession.

1. Demonstrate an ability to develop a professional resume / CV; be able to explain everything about this document.
2. Demonstrate leadership and followship when working in a team with others, both in and out of class. (You will be working with these peers for potentially the rest of your life so you should get to know them now - before they are famous!)
3. Demonstrate an ability to take criticism positively and integrate others criticism to further improve your work.

Science

1. Describe, explain and assess scientific findings in primary source journal articles.
2. Describe, explain and assess scientific approaches presented in class.

Data analysis, simulations, and software

7. Apply computer simulations to research questions of interest; summarize and assess the results.
8. Distinguish the most challenging aspects of learning new computer software.

Evaluation philosophy

In this class I will present knowledge and my own interpretations. For your assignments I will not present all knowledge necessary, and in some cases present no knowledge but will expect you to conduct evaluation and synthesis of a topic. I believe that you, as PhD students should be able to find all background knowledge necessary and then use it. I expect you to be able to find information on your own and hope you will already be familiar doing so. Use Google* liberally - it is your friend and knowledge (in Bloom thinking level terms) is now easily accessible. Just because other teachers have taught you knowledge and then tested you on this, does not mean that this is a good use of your time or mine. I assume the only way to learn is by trying - find what you do not know, do the best you can, and then use criticism to improve.

* Or your favorite search engine.
Grading:
50%: Exercise Problems (5 sets) – Due one week after they are given.
10%: Reading assignments.
10%: Quizzes (2) - First 20 min. of class based on problem sets.
10%: Wiki contribution - See Wiki section of syllabus.
20%: Team research project proposals.

Grading Scale: A = 90-100%; B = 80-89%; C = 70-79%; D = 60-69%; F = < 60%

50% Exercise problems
Due one week after given – at the beginning of class. I expect each problem set could take more
than 20 hours of your time. Genetics and statistics will be abstract unless you struggle through
the problems; this course combines both. If the problem sets are taking longer than this, please
see me. They are not designed to be busy work. Grades will be based on appearance, clarity,
conciseness and most importantly, the amount of thought you put in. Your level of thought is
graded based on Bloom’s Taxonomy thinking levels (see back of assignment #1). Late work
drops grade 25% after each subsequent class. Throughout your career, if your writing is hard to
follow, boring or looks messy and unattractive, people will not want to read it; therefore
comments and grades are necessarily also directed at these aspects. If you do poorly you may be
asked to submit a revision. If so please highlight all changes so I can find them easily.

10%: Reading assignments
Do your reading and be prepared to contribute to discussion and/or answer questions on it. Each
paper discussion will be led by one student.

10%: Quizzes
Quizzes will be unannounced and given at the beginning of class. Quiz questions will be based
on assignments I have returned to you. The objective of the quizzes is to make you look over
your returned work and helping you fill in your gaps in understanding.

10% Wiki contribution
Contribution to the wiki is two-fold. 1) You need to put concepts into your own words, and give
your own examples – this helps reinforce what you have learned. 2) There is little available
online or in print to get the “Readers Digest” version of the newest concepts, terms, systems and
examples we will discuss in this class. You should describe topics however you think it will be
easiest for others to learn. You can help perform Darwinian selection on scientific ideas! 3) Your
examples and projects may inspire the next scientific breakthrough…but only if they are shared
and published.

20% Team research proposals
You will each be a leader and a team member in groups of two to four. Your team goal is to get
your research proposal funded by a fictional private science agency. You will come up with one
proposal utilizing everyone’s expertise (either three independent but synergistic projects, or one
project that everyone could participate in). The project must translate and build on something
learned in this class and be novel (i.e. fundable). 10pg. max including budget. Brevity is
desirable. Assignment benchmarks will be given to keep you on track.

Academic integrity:
Science cannot be conducted in isolation and thus I highly encourage you to collaborate with
your colleagues in the class. You will likely have interactions with them or through them for the
rest of your career. You will also learn more from them than you do from me. If you do not personally need help then please help others who do. This being said I will not tolerate any direct copying or lack of effort (i.e. laziness) in problem solving and neither should you.

"An Aggie does not lie, cheat or steal or tolerate those who do."

Please see the Honor Council Rules and Procedures on the web:
http://www.tamu.edu/aggiehonor

Americans with Disabilities Act (ADA) policy:
The Americans with Disabilities Act (ADA) is a federal antidiscrimination statute that provides comprehensive civil rights protection for persons with disabilities. Among other things, this legislation requires that all students with disabilities be guaranteed a learning environment that provides for reasonable accommodation of their disabilities. If you believe you have a disability requiring an accommodation, please contact the Department of Student Life, Services for Students with Disabilities in Room B-118 in the Cain Building, or call 845-1637.

Expectations of students
- I expect you want to learn the material.
- I expect you to try hard.
- I expect you to take risks.
- I expect that you will not hesitate to ask a question or correct me if I am wrong.
- I expect that if you are having problems with the material you will contact me.
- I expect the problem sets could to take more than 20 hours of time.
- I expect you to do the assigned readings.
- I expect you to show up to class or else to notify me of your absence.
- I expect you to use higher levels of thinking and do the background research necessary to support all statements and conclusions.

Expectations of your teacher
- You should expect that I want to teach you the course material.
- You should expect that I will try my best to help you succeed.
- You should expect that I will be fair.
- You should expect me to be prepared and ready to defend anything I want you to know.
- You should expect for me to call on you when you are not paying attention.

SCSC 643 is delivered as a conventional on-campus class and proposed as a 700 section for students not located on campus. On-line classes are taught as a section of an on campus class. The on-line class has the same schedule in most cases, the same course material, the same homework, and the same exams. This approach allows for the duplication of the on campus class experience. Web-conferencing through various venues such as Web CT Blackboard options, distance students can ask questions with voice over the internet and interact with other students. Time zone differences for distance students in other countries may present some challenges but they are not insurmountable at the graduate level. In those cases, faculty will interact with the distant student in a standard format that will insure understanding of the course material and timely completion of assignments and course content. The on-line section will be completely on-line except in those situations where the student is a full time employee within driving distance of College Station and occasional on-campus
meetings can facilitate the education process.

C Administrative structure
The Department Heads in Soil and Crop Sciences and Horticultural Sciences are responsible for the academic offerings within their respective departments. The daily management of the graduate programs in each department is in the purview of the Associate Heads for Academic Programs. The contact person for the Ph.D. in Plant Breeding Distance Program is Wayne Smith, Associate Head, Department of Soil and Crop Sciences. No changes in his areas of responsibilities are anticipated at the initial offering of the Ph.D. in Plant Breeding distance delivery degree.

IV. Relationship to Existing Authorized Degree Programs
A Relationship between proposed distance education program and any existing on-campus program
On-line classes are taught as a section of an on campus class. The on-line class has the same schedule in most cases, the same course material, the same homework, and the same exams. This approach allows for the duplication of the on campus class experience. Web-conferencing through various venues such as Web CT Blackboard options, distance students can ask questions with voice over the internet and interact with other students. Time zone differences for distance students in other countries may present some challenges but they are not insurmountable at the graduate level.

The Ph.D. Distance Plant Breeding degree proposed herein can only be pursued under unique circumstances where there is a Graduate-Faculty-eligible Ph.D. scientist at the same employment location as the student. Such opportunities exist in U.S. variety development companies, national and multinational variety development companies, and such entities as the International Research Centers associated with CGIAR. The Graduate Faculty at the distant site would serve as co-chair of the Graduate Advisory Committee with a co-chair on campus in SCSC or HORT.

Full time employees of Texas AgriLife Research or Texas AgriLife Extension, or full time employees on one of the Texas A&M University System campuses are eligible for enrollment in this Ph.D. in Plant Breeding Program. However, students who are compensated as Graduate Assistant Research, Graduate Assistant Teaching, Graduate Assistant Non Teaching, or through any scholarship/fellowship funding and associated with the entities identified in this paragraph in any capacity less than full time employment are not eligible for this Ph.D. in Plant Breeding program.

B Student interaction
The ITS development team is comprised of instructional designers, technology specialists and a web content developer to assist in the development and implementation of this program. This includes elements for effective course management, meeting course and program objectives and learning outcomes, and complying with ADA requirements, Copyright Law, and the Principles of Good Practice for Electronically Offered Academic Degree and Certificate Programs from
SACS and THECB.

The on-line classes will have graduate faculty teaching the course and the same course requirements as on-campus students. When appropriate, live or recorded video feeds from on-campus courses will be used. Distance students can interact with instructors and students synchronously using desktop or interactive videoconferencing, Skype, and texting features. This approach allows for the duplication of the on campus class experience. Distance students can ask questions with voice over IP and interact with other students. Tutorials, advising, and course presentations can occur with the use of Centra (online conferencing). Time zone differences for distance students in other countries may present some challenges but they are not insurmountable at the graduate level. In those cases, the professor will interact with the distant student in a standard format that will insure understanding of the course material and timely completion of assignments and course content. The LMS platform supported by ITS provides technical support for students having difficulty. This platform also provides email, chat, discussion (blog and journal) communication tools to further facilitate interaction with the instructor and learners.

The distance students will have the opportunity to interact with on-campus students through webinars, social media, and other communication technologies. Some courses may be appropriate to deliver to some places using technology such as TTVN or Skype that would allow on-campus and distance students to see and converse in real time. This format would be appropriate for small on-campus classes.

V. Expected Enrollment

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. residents</td>
<td>6</td>
<td>10</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Foreign Nationals</td>
<td>5</td>
<td>8</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

A Anticipated head count

Based on responses from variety development companies in the U.S. and from scientists and administrators at CGIAR Centers to date, we anticipate the number of students shown in the table above for this program. These Ph.D. students will be co-chaired by one of the ten plant breeder professors in SCSC and HORT departments.

B Impact on existing face-to-face program(s)

The proposed Ph.D. in Plant Breeding Distance is not expected to impact our on-campus student numbers. It may reduce the amount of time a traditional Ph.D. student who is co-chaired by a faculty member at one of the Texas AgriLife Research and Extension Centers is required to be on campus but those students would remain traditional on-campus students by our definition.

The extra time and energy required to delivery on-line courses and manage/mentor Ph.D. distance graduate students will be absorbed by the SCSC and HORT plant breeding faculty. With electronic posting of grades, delivery of exams, etc., administrative assistance, clerical, etc. will be minimal.
Addition of a half time technical assistant to keep faculty up to date and assist with IT is desirable.

C Student projections

Graduate programs in agriculture and specifically plant breeding are not considered commonly as cohort teaching/training activities. The need to train a limited number of plant breeders (or, e.g., veterinarians) does not reduce the need for those numbers. Since the distance delivered plant courses will be synchronous with on-campus delivered courses in many cases, and can be delivered to a single person under certain conditions, the number needed to sustain the effort is minimal. The Department of Soil and Crop Sciences currently has 29 Ph.D. plant breeding majors (and 17 M.S. plant breeding majors), additional distance students will only add to our efforts to fulfill the educational mission of Texas A&M University.

Assumptions Underlying Enrollment and Growth Expectations

1. Most admitted distance education Ph.D. students will be part-time, remaining employed. The availability of 24/7 access to course materials via digital technology will enhance the appeal of the program. Employed students who would otherwise not consider the traditional delivered on-campus program due to their professional and family responsibilities will be able to pursue the distance program.

2. Students are expected to finish the Ph.D. distance degree in four to six years. Students should be able to enroll in at least two courses each long semester. The availability of a 24/7 digital program will provide candidates with options for completing course requirements. We expect the completion rate to be similar to that of residence Plant Breeding students.

3. The program will admit additional students each year as the on-line program becomes established and known by perspective students. We will market the degree by contacting CGIAR Centers, Seed Companies in the U.S. and in other countries, and through trade and academic publications. Capitalizing on the reputation of the University, the College of Agriculture, and the Departments of Soil and Crop Sciences and Horticultural Sciences, extensive marketing of the array of on-line course offerings each semester will result in greater enrollment in the program by students from distant locations because travel to campus will not be necessary.

4. Graduate Advisory Committee meetings and Ph.D. prelims and dissertation defenses can be handled through electronic communication devices. These include such commercially available options as Skype, Go-To-Meeting, teleconferencing. Dissertations can be move almost immediately via email attachments or assigning dedicated space on a shared drive or server.

5. The degrees offered in this program will be exempt from TAMU, COALS, Department, or IDP residency requirements and exempt from the minimum number of students required for on-campus course section delivery.

VI. Faculty Resources
A Faculty resources

The faculty listed below are tenured or tenure track faculty on campus at Texas A&M University, College Station. Most of those listed teach and all direct graduate students. Thus they have the background and experience to deliver on-line course information and co-chair distance Ph.D. Plant Breeding graduate students. Additional faculty will not be required at the initial offering of the Ph.D. Plant Breeding distance degree.

<table>
<thead>
<tr>
<th>Professor</th>
<th>Ph.D. Institution</th>
<th>Date of Ph.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cralle, Harry</td>
<td>University of Minnesota</td>
<td>1983</td>
</tr>
<tr>
<td>Hague, Steve</td>
<td>Texas A&M University</td>
<td>2000</td>
</tr>
<tr>
<td>Hays, Dirk</td>
<td>University of Calgary</td>
<td>1997</td>
</tr>
<tr>
<td>Hons, Frank</td>
<td>Texas A&M University</td>
<td>1978</td>
</tr>
<tr>
<td>Ibrahim, Amir</td>
<td>Colorado State University</td>
<td>1998</td>
</tr>
<tr>
<td>Murray, Seth</td>
<td>Cornell University</td>
<td>2008</td>
</tr>
<tr>
<td>Rooney, William</td>
<td>University of Minnesota</td>
<td>1992</td>
</tr>
<tr>
<td>Smith, Wayne</td>
<td>University of Tennessee</td>
<td>1974</td>
</tr>
<tr>
<td>Byrne, David</td>
<td>Cornell University</td>
<td>1980</td>
</tr>
<tr>
<td>Crosby, Kevin</td>
<td>Texas A&M University</td>
<td>1999</td>
</tr>
<tr>
<td>King, Steve</td>
<td>Cornell University</td>
<td>1994</td>
</tr>
<tr>
<td>Koiwa, Hisashi</td>
<td>Kyoto University</td>
<td>1996</td>
</tr>
<tr>
<td>Starr, James</td>
<td>Cornell University</td>
<td>1976</td>
</tr>
<tr>
<td>Yuan, Joshua</td>
<td>University of Tennessee</td>
<td>2007</td>
</tr>
<tr>
<td>Vinson, Brad</td>
<td>Mississippi State University</td>
<td></td>
</tr>
<tr>
<td>Higgins, Lindsey</td>
<td>Texas A&M University</td>
<td></td>
</tr>
<tr>
<td>Callahan, Jamie</td>
<td>The George Washington University (EdD)</td>
<td>1998</td>
</tr>
<tr>
<td>Wang, Jia</td>
<td>University of Georgia</td>
<td>2004</td>
</tr>
<tr>
<td>Upton, Matthew</td>
<td>Texas A&M University</td>
<td>2006</td>
</tr>
</tbody>
</table>

Appendices A and B provide a sampling of Ph.D. Plant Breeding Scientists associated CGIAR Centers and with national or multiple national variety development companies, respectively.

The faculty located in the Department of Soil and Crop Sciences and the Department of Horticultural Sciences will be provided with such additional training as necessary to use the distance delivery and communications with distant students. This instruction will be handled by existing IT personnel in each department and a part time IT individual devoted to the program. Most faculty currently are familiar with the basic concepts and techniques of such delivery and communications such that minimal additional training will be necessary.

Start up funds is provided in the amount of $174,000 for both the proposed distance delivered Ph.D. and M.S. (separate submissions) programs from the College of Agriculture and Life Sciences. These funds will provide salary for a part time IT person to help familiarized faculty with any of the new technology with which they are not familiar and help faulty to make their courses electronic and distance ready.
B Describe equipment, software and connectivity needs for delivery of this program both for students and for the institution.

In general, faculty members and students need access to a computer that is less than four years old, common office software and plug-ins, CD/DVD player/burner, a high-speed (cable or DSL) Internet connection and an up-to-date Web browser. Individual courses may have specific technology requirements.

To capture and edit audio/video-over-PowerPoint: instructors need screen recording/editing software such as Techsmith Camtasia (available from Texas A&M Software Center), access to a semi-professional quality microphone, and/or digital camcorder, a computer with upgraded sound and/or video cards, access to file storage space, as well as training and/or support.

To participate in Web-conferencing: instructors and students need an Internet-connected computer with microphone and/or video camera (built-in or external), and free conferencing software.

To participate in high-quality Video-conferencing: instructors and students need access to networked video conference facilities.

To capture, scan or modify images, instructors may need access to a digital camera, scanner, and/or photo editing software such as Adobe Photoshop, as well as training or assistance to modify images.

C How will students access library resources, including print, electronic, and human.

Distant graduate students will have access to many of the services of the University library with ever increasing electronic data bases and other electronic services. Distance Plant Breeding degree program students will be informed fully on how to access the TAMU library system and provide initial information about how to access within each syllabus. Off-campus access to electronic holdings is available by NetID and password to currently enrolled students and faculty and staff of Texas A&M University and its affiliated agencies.

Other Student Services can be accessed through the Offices of the Dean of Student Life at http://studentlife.tamu.edu/contact.

VII. Financial Support
A Anticipated costs

No new faculty costs are required for the Ph.D. in Plant Breeding Distance Program. All plant breeding faculty and associated faculty in Soil and Crop Sciences Department and the Horticultural Sciences Department are fully supportive of the program capable of meeting expectations.

The Ph.D. in Plant Breeding Distance Program will require a 0.25 FTE in technical/administrative assistance and a GAT assistantship to assist faculty in
development, maintenance, and update of course contents. The Differential Tuition assessment will be utilized by individual professors and the Departments to maintain quality and quantity of course content and course delivery systems.

The College of Agriculture and Life Sciences is providing start up funds sufficient to cover these costs for the first three years of the program.

B Budget

Start up funds for three years for the Ph.D (and M.S. (see separate documentation)) in Plant Breeding provided by the College of Agriculture and Life Sciences are:

Technical Assistance @ 0.25 FTE: $20,000/yr for three years (total $60,000)

Course Development: $24,000 (first year only)

GAT: $30,000/yr for three years (total $90,000)

C Financial support

No financial support is anticipated for Ph.D. Plant Breeding distance students. It is anticipated that these students will be full time employees of national or international variety development companies or such NGO entities as the CGIAR Centers around the world.

VIII. Additional Distance Delivery Considerations

A Adherence to Principles of Good Practice

Texas A&M University certifies that the Doctor of Philosophy in Plant Breeding as described herein to be delivered electronically via the Internet meets the standards and criteria established in Chapter 4, Subchapter p of the rules and regulations of the Texas Higher Education Coordinating Board. Those standards include:

1. Quality Standards: The Distance Plant Breeding degree program is composed of courses outlined in the documentation of this request. As required under Subchapter P, distance students in this program will complete the same work as students in the resident sections of the courses. Since the distance courses are taught via the Internet, students may be “at a distance” or on campus. No distinction in requirements is made for students based on their location.

The original research requirement for the Ph.D. degree will be directed by a Graduate Advisory Committee that is co-chaired by a graduate faculty member located at TAMU at College Station and a graduate faculty member located at the residency of the distance student. The criteria for Graduate Faculty Membership is defined by TAMU, COALS, and the Office of Graduate Studies and all members must meet those criteria. Since the Ph.D. Distance Plant Breeding degree can only be attained with original research and since the criteria for membership in the Graduate Faculty of TAMU is the same for candidates on campus or off campus, the rigor and scientific expectations for research leading to a thesis or dissertation of students in the Distance Plant Breeding degree program will be the same as for on campus graduate students. On-campus faculty within the departments and MEP IDP have extensive experience collaborating with colleagues at Texas AgriLife Research and Extension Centers across the state of Texas in guiding original research away from campus.
The Distance Plant Breeding degree program faculty in Soil and Crop Sciences, and Horticultural Sciences, along with faculty in MEPS, are committed to providing a level of quality for off-campus students equivalent to that of on-campus resident credit instruction. All standards required of regularly enrolled on-campus students will be required of the students who use remote instructional services. These services include the use of regularly employed graduate faculty members, the same faculty contact hour requirements, courses being taught only by graduate faculty, availability of faculty support services, and standard evaluation.

The Distance Plant Breeding degree program will be systemically reviewed every seven years, coinciding with the recurring Departmental Review. This review will include surveys and interviews with current students, graduates, faculty, administration, and others with interests in the program and the plant breeding discipline. Teaching, evaluation, review, and refining are important steps in ensuring quality.

2. SACS Standards: Distance Plant Breeding degree program courses are the same as resident courses and are offered in accordance to SACS standards.

3. Admissions: All students admitted to graduate classes in Plant Breeding (PLBR) at TAMU must be admitted as a doctoral student (G8), or as a post-baccalaureate, non-degree seeking student (G6). Admission as a G6 student requires that the student complete the application for graduate admission, submit transcripts of baccalaureate work, and submit three letters of recommendation. If the applicant is a foreign national then they must meet the minimum English language requirement to be verified in English through the verbal portion of the GRE or other standardized exams such as the TOEFL. The Distance Plant Breeding degree program would require students entering as a G6 to have the necessary prerequisites for any courses in which the student enrolls. As indicated in the TAMU graduate catalogue, students may apply a maximum of 12 semester credit hours to an advanced degree when the hours are taken while in the G6 classification, if the student can meet all requirements for admission to the master’s program, and if SCSC and HORT approves the applications of any or all of the courses taken while the student is in the G6 status. However, the departments are under no obligation to allow the student to apply any of the G6 hours toward the Ph.D. in Plant Breeding. All students, distant or resident, applying for admission in Plant Breeding must apply and meet all of the requirements for admission as set forth by the University, the College, SCSC, and HORT, with the exception that applicants in the Distance Plant Breeding degree program do not have to meet the requirements for English language certification. They will be required, however, to meet the TAMU requirements for English language verification since all courses will be taught in English only.

4. Faculty: Texas A&M University allows only graduate faculty to teach graduate courses with membership gained only through application through respective colleges within the University. All applications are vetted by individual departments and a college committee, Graduate Program Council, prior to submission to the Office of Graduate Studies. Non-teaching faculty are granted Graduate Faculty status through the same process and are required to meet the same criteria as teaching faculty.

Teaching faculty are required to allow students to evaluate their effectiveness
through the Teaching Evaluation Questionnaire. Faculty teaching distance sections will add appropriate questions for students taking distance classes that will allow the professor to refine and improve their distance delivery. The same faculty who teach resident sections of courses will also teach the distance sections within the Distance Plant Breeding degree program. TAMU offers support for distance degrees through the Office of Distance Education. All faculty shown in the section below either have an on-line course or have agreed to develop their resident course for distance delivery for the Distance Plant Breeding degree program.

5. Training and support of faculty using instructional telecommunications is available through the SCSC and HORT Departments.

6. Instructor of Record: the graduate faculty member teaching the graduate course is solely responsible for teaching, monitoring, and evaluating all course activities and assigning grades. The professor of record for all 691 research credit hours associated with the Ph.D. distance candidates will be assigned to the campus co-chair.

7. Instruction: All course materials used in the Distance Plant Breeding degree program have been and will be developed by the faculty responsible for each individual course. These materials provide the same content ideas and processes that are examined in resident classes taught on campus.

8. Support Services: distance students receive academic advising from graduate faculty responsible for the program and the courses that comprise the graduate programs delivered via distance. Support and guidance for the original research component of the Ph.D. Distance Plant Breeding degree program is provide by the students co-chairs, one on campus and one required at the distant site, collaboratively with the other members of the student’s Graduate Advisory Committee. Such guidance will be equivalent to that provided plant breeding graduate students solely on campus and those co-directed by an AgriLife Research co-chair at a Research and Extension Center and a co-chair on campus.

TAMU has library services available for distance graduate students available online. Distant status graduate students may apply for financial aid if they meet the University criteria just as in-residence students, although the primary target population for the Distance Plant Breeding degree program will be full time employees who would not seek financial aid outside of their employer.

9. Ease of communications is a must for efficient on-line instructions, conveyance of knowledge, interaction with other students and professor, and examinations. Electronic mail, telephone, instant messaging, and texting are examples of instant communications available. The Blackboard learning management system provides the ability to utilize the web creating connection with students via the internet literally anywhere-anytime. Professors in SCSC, HORT, and MEPS will be provided assistance in utilizing the appropriate hardware and software.

Advertisements of the Distance Plant Breeding degree program will be placed in trade journals, academic media, and professional society media with pertinent program descriptions and links to professors, web sites, phone numbers, and email addresses. Distant learners enrolled in classes will be provided appropriate contact
information and web addresses as part of the syllabi.

10. Computing Services:
 All TAMU graduate students, whether in residence or distant, should have the same access to computing services provided by the Department of Computing and Information Services. Such services can be found at (http://cis.tamu.edu). CIS provides information technology resources, facilities and support to help the students, faculty and staff of TAMU achieve their learning, teaching and research goals. Instructional Technology Services (ITS) (itsinfo.tamu.edu) supports Blackboard Vista and provides training workshops for instructors and students. TTVN (ttvn.tamu.edu) provides support for video- and Web-conferencing services.

11. Departmental IT:
 The Department of Soil and Crop Sciences and Department of Horticultural Sciences also will provide technical support for faculty teaching distance courses in this program. The Departments of Soil and Crop Sciences and Horticultural Sciences have adequate hardware and software capabilities to support distance courses as well as IT personnel to assist faculty.

12. Library Services:
 Distant graduate students will have access to many of the services of the University library with ever increasing electronic data bases and other electronic services. Distance Plant Breeding degree program students will be informed fully on how to access the TAMU library system and provide initial information about how to access within each syllabus. Off-campus access to electronic holdings is available by NetID and password to currently enrolled students and faculty and staff of Texas A&M University and its affiliated agencies.

 Other Student Services can be accessed through the Offices of the Dean of Student Life at http://studentlife.tamu.edu/contact.

13. Facilities:
 Courses and course materials offered via the Internet, as well as the course professor, can be accessed by students when given the appropriate URL and password.

14. TAMU follows all guideline for off-campus instruction given in the Higher Education Administrative Code. The proposal to allow TAMU to offer its Ph.D. in Plant Breeding via distance is developed to comply with those criteria

- Provide the THECB Certification form for Distance Education
- Certification form for electronically delivered and off-campus degree and certificate programs available at http://www.thecb.state.tx.us/index.cfm?objectid=8B996EAAE-9356-09BD-80C46308898CBB45
B Delivery modes

The Ph.D. in Plant Breeding Distance will be delivered through the university LMS so that students can have a consistent location to access course materials. Depending on the content in the course, visual and graphical elements will be included. Interactivity and engagement will occur between the students, instructor, and content. Students will be able to download instructional materials to their personal computers. Some desktop or interactive video/audio components will provide real time interaction. Adobe connect, Skype (voice over IP), and sharing of documents will supplement formal course delivery. Many software programs are free to the user to access course materials and facilitate interaction (Microsoft media player, iTunes library, UTube, Adobe Flash, Adobe Acrobat reader, etc).

C Collaborative arrangements

The Ph.D. in Plant Breeding Distance has the same requirements as on campus delivered Ph.D. degrees. Primary among these requirements is the original research component. To achieve this original research component with a true distance delivery as proposed herein requires a Ph.D. scientist located at the distance site where the student is located. This distant Ph.D. scientist must be eligible and made a member of the TAMU Graduate Faculty and then becomes a co-chair of the student’s Graduate Advisory Committee. The research agreed to by the committee is then lead by the distant co-chair with additional input by the Graduate Advisory Committee. Appendix A provides a listing of Graduate Faculty eligible Ph.D. plant breeders located at CGIAR Centers who are potential co-chairs of Ph.D. Graduate Advisory Committees. Appendix B provides examples of Ph.D. scientists at National/multinational variety development companies and CGIAR Centers who have agreed to participate in the Ph.D. Plant Breeding Distance Program as described herein.

The following national/multinational companies are examples of well respected private organizations that are known to the faculty of Horticultural Sciences and Soil & Crop Sciences to have sufficient facilities and financial ability to support full time employees seeking a Ph.D. in Plant Breeding through this Distance Program: Monsanto, Dow AgriSciences, Bayer CropSciences, Pioneer, Syngenta, Dupont, Avanta, BASF, Agriliant, Illinois Foundation Seed, CERES, Mendel, Driscoll, Campbell, Green Giant, R.J. Reynolds, Dole, Ball Oramentals, Seminas, and Dupont. Employees of other national, multinational, or international companies with which our faculty do not have a working relationship will be required to provide documentation to a Plant Breeding Distance Coordinating Committee composed of the Associate Heads of the departments eligible to grant the degree and a plant breeding faculty member appointed by the Head of each department eligible to grant the degree. The committee will determine if the company has sufficient facilities, land, equipment, and commitment to support the Ph.D. level research proposed. All CGIAR Centers are known to have outstanding facilities and commitment to the science of plant breeding and the alleviation of world poverty and hunger. All state agricultural experiment stations in the U.S. associate with Land Grant Universities or recognized Agricultural Colleges or Universities will be consider to have sufficient facilities and commitment to participate in this program. All others supporting entities will be vetted through the Plant Breeding Distance Coordinating Committee.
All students in this program will be qualified and accepted graduate students at Texas A&M University at College Station. All academic work for the Ph.D. Plant Breeding Distance degree will be from Texas A&M University at College Station, with the exception that OGS can allow transfer hours if agreed to by the student’s advisory committee, and the degree will be awarded by Texas A&M University at College Station.

D Program differences

There are no differences in any aspect of the application, acceptance, academic rigor, course requirements, except that the residency requirement is waived for the Ph.D. Plant Breeding Distance student.

Needs for special needs students are not expected to be an issue with the Ph.D. in Plant Breeding Distance Program since all classes are delivered via the internet.

As discussed above, library access, all course materials, and all other instruction material will be made available to the student via the internet. The Evans Library at Texas A&M University if fully internet capable and already supports distance student learning.

E Student interactions

As a graduate degree program, orientation needs should be minimal. Students in this program have experienced collegiate education at one or more college campuses, albeit many will have not experienced an American college campus. Instructors will be cautioned that they must make sure that course instructions are explicit and that distance students are give exact URLs along with specific pathways in which to gain access to any documents needed by the student. The Evans Library has instructions, librarians, and experience to aid in this effort.

Students and instructors will interact on a regular basis as described above during the conduct of any particular class. The co-chairs of the student’s Graduate Advisor Committee should schedule regular committee meetings to share information and monitor the distant student’s progress. This is vital in keeping the distance student engaged and on track and development of the research and development of the thesis document, as well as follow-up publication in research peer reviewed journals.

Residency requirements for Ph.D. in Plant Breeding Distance Program is waived.

Potential students will be made aware of the program in the following venues:

2. Direct electronic mailings of brochures announcing and describing the program.

3. Direct communications, i.e., word of mouth, between plant breeding scientists at TAMU and fellow scientists with national/multinational variety development companies, CGIAR Centers, etc.

IX. Evaluation
A Program quality

The Department of Soil and Crop Sciences and the Department of Horticulture will monitor the quality of the Ph.D. in Plant Breeding Distance Program in the same ways that on-campus classes and programs are monitored. These include but not limited to student evaluations and annual reviews by the Department Head. Distance Learners will have to show mastery of the subject matter in the same manner as on-campus students.

B Participant satisfaction

Through student evaluations and communications within Graduate Advisory Committees.

C Assessment procedures

The Departments of Soil and Crop Sciences and Horticulture have Assessments procedures in place for all majors per the University requirements. In addition, the advancement of distant learners obtaining a Ph.D. in Plant Breeding Distance within their companies or at NGO organizations such as CGIAR Centers will be monitored.

Student Evaluations will be conducted via the electronic model used by Texas A&M University for all courses. This opportunity mirrors the effort to make this distance delivery program equivalent to on-campus courses and programs. Additional assessments are common to all graduate degrees, i.e., the distant student, just as on-campus students, will interact with their Graduate Advisor Committee in all aspects of the degree program.

Distance Learners will have the same redress opportunities as on-campus graduate students, i.e., availability of Associate Heads for Academic Affairs in any department delivering an on-line course, Department Heads, and the Ombudsperson for the Office of Graduate Studies.

D Use of assessment

The assessment protocols noted above will be used to evaluate and improve the distance delivery of the Ph.D. in Plant Breeding. Interactions with Graduate Advisory Committees, especially the distance co-chair, will provide feedback on our delivery software and teaching methodology.
ANTICIPATED SOURCES OF FUNDING: EXPLANATORY NOTES AND EXAMPLES

I. Formula Income

A. The first two years of any new program should not draw upon formula income to pay for the program.

B. For each of Years 3 through 5, enter the smaller of:
 1. the new formula income you estimate the program would generate, based on projected enrollments and formula funding rates; or
 2. half of the estimated program cost for that year.

C. Because enrollments are uncertain and programs need institutional support during their start-up phase, it is the Coordinating Board's policy to require institutions to demonstrate that they can provide:
 1. sufficient funds to support all the costs of the proposed program for the first two years (when no new formula funding will be generated); and
 2. half of the costs of the new program during years three through five from sources other than state formula funding.

D. When estimating new formula income, institutions should take into account the fact that students switching programs do not generate additional formula funding to the institution. For example, if a new master's program has ten students, but five of them switched into the program from existing master's programs at the institution, only five of the students will generate new formula income to help defray the costs of the program.

II. Other State Funding

This category could include special item funding appropriated by the legislature, or other sources of funding from the state that do not include formula-generated funds (e.g., HEAF, PUF, etc.).

III. Reallocation of Existing Resources:

If faculty in existing, previously budgeted positions are to be partially or wholly reallocated to the new program, you should explain in the text of your proposal how the institution will fulfill the current teaching obligations of those faculty and include any faculty replacement costs as program costs in the budget.

IV. Federal Funding

Only federal monies from grants or other sources currently in hand may be included. Do not include federal funding sought but not secured. If anticipated federal funding is obtained, at that time it can be substituted for funds designated in other funding categories. Make note within the text of the proposal of any anticipated federal funding.

A. Other Funding
This category could include Auxiliary Enterprises, special endowment income, or other extramural funding.
COSTS TO THE INSTITUTION OF THE PROGRAM/ADMINISTRATIVE CHANGE

Note: Use this chart to indicate the dollar costs to the institution that are anticipated from the change requested.

<table>
<thead>
<tr>
<th>Cost Category</th>
<th>Cost Sub-Category</th>
<th>Before Approval Year*</th>
<th>1st Year</th>
<th>2nd Year</th>
<th>3rd Year</th>
<th>4th Year</th>
<th>5th Year</th>
<th>TOTALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faculty Salaries</td>
<td>(New)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>(Reallocated)</td>
<td>0</td>
<td>30,000</td>
<td>30,000</td>
<td>30,000</td>
<td>30,000</td>
<td>30,000</td>
<td>150,000**</td>
</tr>
<tr>
<td>Program Administration</td>
<td>(New)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>(Reassignments)</td>
<td>6,400</td>
<td>6,400</td>
<td>6,400</td>
<td>6,400</td>
<td>6,400</td>
<td>6,400</td>
<td>38,400</td>
</tr>
<tr>
<td>Graduate Assistants</td>
<td>(New)</td>
<td>0</td>
<td>30,000</td>
<td>30,000</td>
<td>30,000</td>
<td>0</td>
<td>0</td>
<td>90,000</td>
</tr>
<tr>
<td></td>
<td>(Reallocated)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Clerical/Staff</td>
<td>(New)</td>
<td>0</td>
<td>20,000</td>
<td>20,000</td>
<td>20,000</td>
<td>0</td>
<td>0</td>
<td>60,000</td>
</tr>
<tr>
<td></td>
<td>(Reallocated)</td>
<td>0</td>
<td>5,000</td>
<td>5,000</td>
<td>5,000</td>
<td>10,000</td>
<td>10,000</td>
<td>35,000</td>
</tr>
<tr>
<td>Supplies & Materials</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Library & IT</td>
<td></td>
<td>0</td>
<td>5,000</td>
<td>0</td>
<td>0</td>
<td>5,000</td>
<td>0</td>
<td>10,000</td>
</tr>
<tr>
<td>Resources**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equipment</td>
<td></td>
<td>0</td>
<td>10,000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5,000</td>
<td>15,000</td>
</tr>
<tr>
<td>Facilities</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Other (Identify)</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTALS</td>
<td></td>
<td>6,400</td>
<td>106,400</td>
<td>91,400</td>
<td>91,400</td>
<td>51,400</td>
<td>51,400</td>
<td>398,400</td>
</tr>
</tbody>
</table>

* Include costs incurred for three years before the proposal is approved by the Board (e.g., new faculty, library resources, equipment, facilities remodeling, etc.). ** IT = Instructional Technology. *** Assumes 10% of faculty 02 salary in SCSC and HORT as potential Committee Co-chairs and professors of record.
ANTICIPATED SOURCES OF FUNDING

Note: Use this chart to indicate the dollar amounts anticipated from various sources. Use the reverse side of this form to specify as completely as possible each non-formula funding source.

<table>
<thead>
<tr>
<th>Funding Category</th>
<th>1st Year</th>
<th>2nd Year</th>
<th>3rd Year</th>
<th>4th Year</th>
<th>5th Year</th>
<th>TOTALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Formula Income*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>136,406</td>
<td>136,406</td>
<td>136,406</td>
<td>409,218</td>
</tr>
<tr>
<td>II. Other State Funding*</td>
<td>74,000</td>
<td>50,000</td>
<td></td>
<td></td>
<td></td>
<td>174,000**</td>
</tr>
<tr>
<td>III. Reallocation of Existing Resources*</td>
<td>56,400</td>
<td>41,400</td>
<td>41,400</td>
<td>51,400</td>
<td>51,400</td>
<td>242,000</td>
</tr>
<tr>
<td>IV. Federal Funding* (In-hand only)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>V. Other Funding*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

TOTALS
130,400 91,400 227,806 187,806 187,806 825,218

*For more information, please refer to the accompanying Anticipated Sources of Funding: Explanatory Notes and Examples.

NON-FORMULA SOURCES OF FUNDING

31
Note: Use this form to specify as completely as possible each of the non-formula funding sources for the dollar amounts listed on the reverse side of this form.

<table>
<thead>
<tr>
<th>Funding Category</th>
<th>Non-Formula Funding Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>II. Other State Funding*</td>
<td>#1: College of Agriculture and Life Sciences</td>
</tr>
<tr>
<td></td>
<td>#2</td>
</tr>
<tr>
<td>III. Reallocation of Existing Resources*</td>
<td>#1 reallocation of 10% of SCSC and HORT Plant Breeding faculty who will teach and serve as</td>
</tr>
<tr>
<td></td>
<td>graduate committee chairs or co-chairs.</td>
</tr>
<tr>
<td></td>
<td>#2</td>
</tr>
<tr>
<td>IV. Federal Funding*</td>
<td>#1</td>
</tr>
<tr>
<td></td>
<td>#2</td>
</tr>
<tr>
<td>V. Other Funding*</td>
<td>#1</td>
</tr>
<tr>
<td></td>
<td>#2</td>
</tr>
</tbody>
</table>

*For more information, please refer to the accompanying Anticipated Sources of Funding: Explanatory Notes and Examples.
Appendix A

Potential Graduate-Faculty-Eligible Ph.D. Scientists at International CGIAR Centers

<table>
<thead>
<tr>
<th>CGIAR Center</th>
<th>Country</th>
<th>Scientist</th>
<th>Position</th>
<th>email</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIAT</td>
<td>Colombia</td>
<td>Echeverria, Ruben G.</td>
<td>Director General</td>
<td>ruben.echeverria@cgiar.org</td>
</tr>
<tr>
<td>CIAT</td>
<td>Colombia</td>
<td>Beebe, Stephen</td>
<td>Bean Pgm Leader</td>
<td>s.beebe@cgiar.org</td>
</tr>
<tr>
<td>CIAT</td>
<td>Colombia</td>
<td>Hershey, Clair</td>
<td>Cassava Pgm Leader</td>
<td>chershey@cgiar.org</td>
</tr>
<tr>
<td>CIAT</td>
<td>Colombia</td>
<td>Debouck, Daniel</td>
<td>Genetic Resources Pgm</td>
<td>d.debouck@cgiar.org</td>
</tr>
<tr>
<td>CIAT</td>
<td>Colombia</td>
<td>Martinex, Cesar P.</td>
<td>Rice Pgm</td>
<td>c.p.martinez@cgiar.org</td>
</tr>
<tr>
<td>CIAT</td>
<td>Colombia</td>
<td>Peters, Michael</td>
<td>Tropical Forages Pgm</td>
<td>m.peters@cgiar.org</td>
</tr>
<tr>
<td>CIMMYT</td>
<td>Mexico</td>
<td>Braun, Hans-Joachim</td>
<td>Director, Wheat (breeder)</td>
<td>h.j.braun@cgiar.org</td>
</tr>
<tr>
<td>CIMMYT</td>
<td>Mexico</td>
<td>Ammar, Karim</td>
<td>Wheat Breeder</td>
<td>k.ammar@cgiar.org</td>
</tr>
<tr>
<td>CIMMYT</td>
<td>Mexico</td>
<td>Baitassov, Arman</td>
<td>Agronomist</td>
<td>a.baitassov@cgiar.org</td>
</tr>
<tr>
<td>CIMMYT</td>
<td>Mexico</td>
<td>Bekele, Abeyo</td>
<td>Wheat Pathology</td>
<td>b.abeyo@cgiar.org</td>
</tr>
<tr>
<td>CIMMYT</td>
<td>Mexico</td>
<td>Dreisigacker, Susanne</td>
<td>Wheat Molecular Breeding</td>
<td>s.dreisigacker@cgiar.org</td>
</tr>
<tr>
<td>CIMMYT</td>
<td>Mexico</td>
<td>Duveiller, Etienne</td>
<td>Associate Director/Wheat Path</td>
<td>e.duveiller@cgiar.org</td>
</tr>
<tr>
<td>CIMMYT</td>
<td>Mexico</td>
<td>Govindan, Velu</td>
<td>Wheat Breeder</td>
<td>velu@cgiar.org</td>
</tr>
<tr>
<td>CIMMYT</td>
<td>Mexico</td>
<td>He, Zhonghu</td>
<td>Wheat Breeder</td>
<td>z.he@cgiar.org</td>
</tr>
<tr>
<td>CIMMYT</td>
<td>Mexico</td>
<td>Herrera-Foessel, Sybil</td>
<td>Wheat Geneticist/Pathology</td>
<td>s.herrera@cgiar.org</td>
</tr>
<tr>
<td>CIMMYT</td>
<td>Mexico</td>
<td>Huerta-Espino, Julio</td>
<td>Pathologist</td>
<td>j.huerta@cgiar.org</td>
</tr>
<tr>
<td>CIMMYT</td>
<td>Mexico</td>
<td>Joshi, Arun Kumar</td>
<td>Wheat Breeder</td>
<td>a.k.joshi@cgiar.org</td>
</tr>
<tr>
<td>CIMMYT</td>
<td>Mexico</td>
<td>Loladze, Alexandre</td>
<td>Wheat Breeder-Durum</td>
<td>a.loladze@cgiar.org</td>
</tr>
<tr>
<td>CIMMYT</td>
<td>Mexico</td>
<td>Manes, Yann</td>
<td>Wheat Breeder</td>
<td>v.mares@cgiar.org</td>
</tr>
<tr>
<td>CIMMYT</td>
<td>Mexico</td>
<td>Mondal, Suchismita</td>
<td>Wheat Breeder</td>
<td>s.mondal@cgiar.org</td>
</tr>
<tr>
<td>CIMMYT</td>
<td>Mexico</td>
<td>Morgunov, Alexei</td>
<td>Wheat Breeder</td>
<td>a.morgunov@cgiar.org</td>
</tr>
<tr>
<td>CIMMYT</td>
<td>Mexico</td>
<td>Nicol, Julie Margaret</td>
<td>Wheat Namatology</td>
<td>j.nicol@cgiar.org</td>
</tr>
<tr>
<td>CIMMYT</td>
<td>Mexico</td>
<td>Rosewarne, Garry</td>
<td>Wheat Breeder</td>
<td>g.rosewarne@cgiar.org</td>
</tr>
<tr>
<td>CIMMYT</td>
<td>Mexico</td>
<td>Sharma, Rajiv</td>
<td>Wheat Improvement</td>
<td>amin_sharifi51@cgiar.org</td>
</tr>
<tr>
<td>CIMMYT</td>
<td>Mexico</td>
<td>Singh, Sukhwinder</td>
<td>Wheat Breeder</td>
<td>suk.singh@cgiar.org</td>
</tr>
<tr>
<td>CIMMYT</td>
<td>Mexico</td>
<td>Singh, Ravi P.</td>
<td>Wheat Breeder</td>
<td>r.singh@cgiar.org</td>
</tr>
<tr>
<td>CIMMYT</td>
<td>Mexico</td>
<td>Singh, Pawan K.</td>
<td>Wheat Pathology/Breeding</td>
<td>pk.singh@cgiar.org</td>
</tr>
<tr>
<td>CIMMYT</td>
<td>Mexico</td>
<td>Ward, Richard</td>
<td>Wheat Breeder</td>
<td>r.ward@cgiar.org</td>
</tr>
<tr>
<td>CIMMYT</td>
<td>Mexico</td>
<td>Prasanna, Boddupalli M.</td>
<td>Director, Maize Pgm.</td>
<td>b.m.prasanna@cgiar.org</td>
</tr>
<tr>
<td>CIMMYT</td>
<td>Mexico</td>
<td>Babu, Raman</td>
<td>Molecular Maize Breeder</td>
<td>r.babu@cgiar.org</td>
</tr>
<tr>
<td>CIMMYT</td>
<td>Mexico</td>
<td>Beyene, Yoseph</td>
<td>Maize Breeder</td>
<td>y.beyene@cgiar.org</td>
</tr>
<tr>
<td>CIMMYT</td>
<td>Mexico</td>
<td>Ghliwayo, Thanda</td>
<td>Maize Breeder</td>
<td>d.thanda@cgiar.org</td>
</tr>
<tr>
<td>CIMMYT</td>
<td>Mexico</td>
<td>Jeffers, Daniel</td>
<td>Maize Breeder</td>
<td>d.jeffers@cgiar.org</td>
</tr>
<tr>
<td>CIMMYT</td>
<td>Mexico</td>
<td>K. Nair, Sudha</td>
<td>Maize Gene Mapping</td>
<td>sudha.nair@cgiar.org</td>
</tr>
<tr>
<td>CIMMYT</td>
<td>Mexico</td>
<td>Magorokosh, Cosmos</td>
<td>Maize Breeder</td>
<td>c.mogorokosho@cgiar.org</td>
</tr>
<tr>
<td>CIMMYT</td>
<td>Mexico</td>
<td>Mahuku, George S.</td>
<td>Pathology</td>
<td>g.mahuku@cgiar.org</td>
</tr>
<tr>
<td>CIMMYT</td>
<td>Mexico</td>
<td>Makumbi, Dan</td>
<td>Maize Breeder</td>
<td>d.makumbi@cgiar.org</td>
</tr>
<tr>
<td>Institution</td>
<td>Country</td>
<td>Name</td>
<td>Position</td>
<td>Email</td>
</tr>
<tr>
<td>-------------</td>
<td>---------</td>
<td>---------------------------------</td>
<td>--------------------------------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>CIMMYT</td>
<td>Mexico</td>
<td>Mduruma, Zubeda</td>
<td>Maize Breeder</td>
<td>zmduruma@cgiar.org</td>
</tr>
<tr>
<td>CIMMYT</td>
<td>Mexico</td>
<td>Mugo, Stephen</td>
<td>Maize Breeder</td>
<td>s.mugo@cgiar.org</td>
</tr>
<tr>
<td>CIMMYT</td>
<td>Mexico</td>
<td>Narro Leon, Luis Alberto</td>
<td>Maize Breeder</td>
<td>ciat-maize@cgiar.org</td>
</tr>
<tr>
<td>CIMMYT</td>
<td>Mexico</td>
<td>Ortiz-Ferrara, Guillermo</td>
<td>Cereal Breeder</td>
<td>oferrara@cgiar.org</td>
</tr>
<tr>
<td>CIMMYT</td>
<td>Mexico</td>
<td>Rojas Stutz, Marc Christian</td>
<td>Maize Consortium Leader</td>
<td>me.rojas@cgiar.org</td>
</tr>
<tr>
<td>CIMMYT</td>
<td>Mexico</td>
<td>San Vicente, Felix</td>
<td>Maize Breeder</td>
<td>f.san_vicente@cgiar.org</td>
</tr>
<tr>
<td>CIMMYT</td>
<td>Mexico</td>
<td>Setimela, Peter</td>
<td>Maize Breeder</td>
<td>p.setimela@cgiar.org</td>
</tr>
<tr>
<td>CIMMYT</td>
<td>Mexico</td>
<td>Tarekegne, Amsal</td>
<td>Maize Breeder</td>
<td>a.tarekegne@cgiar.org</td>
</tr>
<tr>
<td>CIMMYT</td>
<td>Mexico</td>
<td>Twumasi-Afriyie, Stafford</td>
<td>Maize Breeder</td>
<td>t.afriyec@cgiar.org</td>
</tr>
<tr>
<td>CIMMYT</td>
<td>Mexico</td>
<td>Vivek, Bindiganavile</td>
<td>Maize Breeder</td>
<td>b.vivek@cgiar.org</td>
</tr>
<tr>
<td>CIMMYT</td>
<td>Mexico</td>
<td>Zaidi, Pervez</td>
<td>Maize Breeder</td>
<td>phzaidi@cgiar.org</td>
</tr>
<tr>
<td>CIP</td>
<td>Peru</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICARDA</td>
<td>Syria</td>
<td>Solh, Mahmoud</td>
<td>Director General</td>
<td>m.solh@cgiar.org</td>
</tr>
<tr>
<td>ICARDA</td>
<td>Syria</td>
<td>van Ginkel, Ir Maarten</td>
<td>Deputy Director-Research</td>
<td>m.vanginkel@cgiar.org</td>
</tr>
<tr>
<td>ICARDA</td>
<td>Syria</td>
<td>Baum, Michael</td>
<td>Director-Project Development</td>
<td>m.baum@cgiar.org</td>
</tr>
<tr>
<td>ICARDA</td>
<td>Syria</td>
<td>El Nour, Osman Abdalla</td>
<td>Wheat Breeder</td>
<td>o.abdalla@cgiar.org</td>
</tr>
<tr>
<td>ICARDA</td>
<td>Syria</td>
<td>Nachit, Miloudi</td>
<td>Wheat Breeder</td>
<td>m.nachit@cgiar.org</td>
</tr>
<tr>
<td>ICARDA</td>
<td>Syria</td>
<td>Sarker, Ashutosh</td>
<td>Lentil Breeder</td>
<td>a.sarker@cgiar.org</td>
</tr>
<tr>
<td>ICARDA</td>
<td>Syria</td>
<td>Capettini, Flavio</td>
<td>Barley Breeder</td>
<td>f.capettini@cgiar.org</td>
</tr>
<tr>
<td>ICARDA</td>
<td>Syria</td>
<td>Imtiaz, Muhammad</td>
<td>Chickpea Breeder</td>
<td>m.imtiaz@cgiar.org</td>
</tr>
<tr>
<td>ICARDA</td>
<td>Syria</td>
<td>Kemal, Seid-Ahmed</td>
<td>Pulse Pathologist</td>
<td>s.a.kemal@cgiar.org</td>
</tr>
<tr>
<td>ICARDA</td>
<td>Syria</td>
<td>Agrawal, Shiv Kumar</td>
<td>Lentil Breeder</td>
<td>s.agrawal@cgiar.org</td>
</tr>
<tr>
<td>ICARDA</td>
<td>Syria</td>
<td>Udupa, Sripada M.</td>
<td>Geneticist</td>
<td>s.udupa@cgiar.org</td>
</tr>
<tr>
<td>ICARDA</td>
<td>Syria</td>
<td>Ceccarelli, Salvatore</td>
<td>Barley Breeder</td>
<td>s.ceccarelli@cgiar.org</td>
</tr>
<tr>
<td>ICARDA</td>
<td>Syria</td>
<td>Malhotra, Rajinder</td>
<td>Chickpea Breeder</td>
<td>r.malhotra@cgiar.org</td>
</tr>
<tr>
<td>ICARDA</td>
<td>Syria</td>
<td>Bejiga, Geletu</td>
<td>Lentil Breeder</td>
<td>g.bejiga@cgiar.org</td>
</tr>
<tr>
<td>ICARDA</td>
<td>Syria</td>
<td>Maalouf, Fouad</td>
<td>Faba Bean Breeder</td>
<td>f.maalouf@cgiar.org</td>
</tr>
<tr>
<td>ICARDA</td>
<td>Syria</td>
<td>Al-Yassin, Adnan</td>
<td>Barley Breeder</td>
<td>a.a.yassin@cgiar.org</td>
</tr>
<tr>
<td>ICARDA</td>
<td>Syria</td>
<td>Tahir, Izzat Sidahmed Ali</td>
<td>Wheat Breeder</td>
<td>i.tahir@cgiar.org</td>
</tr>
<tr>
<td>ICARDA</td>
<td>Syria</td>
<td>Degu, Wuletaw Tadesse</td>
<td>Wheat Breeder</td>
<td>w.tadesse@cgiar.org</td>
</tr>
<tr>
<td>ICARDA</td>
<td>Syria</td>
<td>Amri, Ahmed</td>
<td>Deputy Director-Genetics</td>
<td>a.amri@cgiar.org</td>
</tr>
<tr>
<td>ICARDA</td>
<td>Syria</td>
<td>Street, Kenneth</td>
<td>Legume GP Curator</td>
<td>k.street@cgiar.org</td>
</tr>
<tr>
<td>ICARDA</td>
<td>Syria</td>
<td>Bari, Abdullah</td>
<td>Geneticist</td>
<td>a.bari@cgiar.org</td>
</tr>
<tr>
<td>ICARDA</td>
<td>Syria</td>
<td>Khalikulov, Zakir</td>
<td>Geneticist</td>
<td>z.khalikulov@cgiar.org</td>
</tr>
<tr>
<td>ICARDA</td>
<td>Syria</td>
<td>Rajaram, Sanjaya</td>
<td>Wheat Breeder</td>
<td>s.rajaram@cgiar.org</td>
</tr>
</tbody>
</table>

ICRISAT | India | Dar, William D. | Director General | icrisat@cgiar.org |
ICRISAT | India | Hoisington, David A. | Deputy Director-Research | icrisat@cgiar.org |
ICRISAT | India | Hash, C.T. | Breeder | icrisat@cgiar.org |
ICRISAT | India | Reddy, Belum V.S. | Breeder | icrisat@cgiar.org |
ICRISAT | India | Rao, P. Srinivasa | Sorghum Breeder | icrisat@cgiar.org |
ICRISAT | India | Gupta, S.K. | Pearl Millet Breeder | icrisat@cgiar.org |
ICRISAT | India | Kumar, A. Ashok | Sorghum Breeder | icrisat@cgiar.org |
ICRISAT | India | Srivatsava, Rakesh KI. | Molecular Breeder | icrisat@cgiar.org |
ICRISAT India Gowda, C.L.L. Pgm. Director-Grain Legumes Res c.gowda@cgiar.org
ICRISAT India Saxena, K.B. Breeder icrisat@cgiar.org
ICRISAT India Gaur, Pooran M. Breeder icrisat@cgiar.org
ICRISAT India Nigam, S.N. Breeder icrisat@cgiar.org
ICRISAT India Gnanesh, B. Nanjappa Breeder icrisat@cgiar.org
ICRISAT India Jukanti, Aravind Kumar Breeder icrisat@cgiar.org
ICRISAT India Janila, P. Groundnut Breeder icrisat@cgiar.org
ICRISAT India Upadhyaya, H.D. Head Genetic Resources h.d.upadhyaya@cgiar.org
ICRISAT India Sillim, Said N. Director icrisat-nairobi@cgiar.org
ICRISAT India Mgonja, Mary A. Breeder icrisat-nairobi@cgiar.org
ICRISAT India Rao, NVPR Ganga Breeder icrisat-nairobi@cgiar.org
ICRISAT India Ojulong, Henry Fred Breeder icrisat-nairobi@cgiar.org
ICRISAT India Monyo, E.S. Grain Legumes Breeder icrisat-malawi@cgiar.org
ICRISAT India Wallyar, Farid Director-WCA icrisat-w-mali@cgiar.org
ICRISAT India Rattunde, Eva W. Sorghum Breeder icrisat-w-mali@cgiar.org
ICRISAT India Rattunde, H.F.W. Sorghum Breeder icrisat-w-mali@cgiar.org
ICRISAT India Gandah, Mahamadou Project Coordinator icrisatsc@cgiar.org
ICRISAT India Haussmann, Bettina Pearl Millet Breeder icrisatsc@cgiar.org
IITA Nigeria Aboubakar, Yacoubou Regional Adm y.aboubaker@cgiar.org
IITA Nigeria Kanju, Edward Cassava Breeder e.kanju@cgiar.org
IITA Nigeria Manyong, Victor Director v.manyong@cgiar.org
IITA Nigeria Dumet, Dominique Head, Genetic Resources d.dumet@cgiar.org
IITA Nigeria Gedil, Melaku Cassava Geneticist m.gedil@cgiar.org
IITA Nigeria Vroh, Bi Irie Breeder b.vroh@cgiar.org
IITA Nigeria Zum Felde, Alexandr̈ Banana/Plantain Agronomist a.zumfeld@cgiar.org
IITA Nigeria Ajala, Oyewole Maize Breeder o.ajala@cgiar.org
IITA Nigeria Badu-Apraku, Baﬄèt Maize Breeder b.badu-apraku@cgiar.org
IITA Nigeria Lopez-Montes, Antonio-Jose Yam Breeder a.lopez-montes@cgiar.org
IITA Nigeria Menkir, Abede Maize Breeder a.menkir@cgiar.org
IITA Nigeria Watson, David Director, Pgm. Development d.watson@cgiar.org
IITA Nigeria Asiedu, Robert Director and Yam Breeder r.asiedu@cgiar.org
IITA Nigeria Hartmann Director General hartmann@cgiar.org
IITA Nigeria Kulakow, Peter Cassava Breeder p.kulakow@cgiar.org
IITA Nigeria Maroya, Norbert Cassava Breeder n.maroya@cgiar.org
IITA Nigeria Tessema, Gezahegn Clonal Crop Field Bank g.tessema@cgiar.org
IITA Nigeria Boukar, Ousmane Cowpea Breeder o.boukar@cgiar.org
IITA Nigeria Ferguson, Morag Cassava Geneticist m.ferguson@cgiar.org
IITA Nigeria Kim, Dong-jin Biotechnologist d.kim@cgiar.org
IITA Nigeria Tefera, Hailu Soybean Breeder h.tefera@cgiar.org
IITA Nigeria Lorenzen, James Banana Breeder j.lorenzen@cgiar.org
<table>
<thead>
<tr>
<th>Institution</th>
<th>Country</th>
<th>Name</th>
<th>Position</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>IITA</td>
<td>Nigeria</td>
<td>Fatokun, C.</td>
<td>Cowpea Breeder</td>
<td>c.fatokun@cgiar.org</td>
</tr>
<tr>
<td>IRRI</td>
<td>Philippines</td>
<td>Bouman, Bas</td>
<td>Head, Crop/Environmental Div.</td>
<td>b.bouman@cgiar.org</td>
</tr>
<tr>
<td>IRRI</td>
<td>Philippines</td>
<td>Brar, Darshan</td>
<td>Head Plant Breeding/Genetics</td>
<td>d.brar@cgiar.org</td>
</tr>
<tr>
<td>IRRI</td>
<td>Philippines</td>
<td>Henry, Amelia</td>
<td>Drought Physiology</td>
<td>a.henry@cgiar.org</td>
</tr>
<tr>
<td>IRRI</td>
<td>Philippines</td>
<td>Kumar, Arvind</td>
<td>Rice Breeder</td>
<td>a.kumar@cgiar.org</td>
</tr>
<tr>
<td>IRRI</td>
<td>Philippines</td>
<td>Dobermann, Achim</td>
<td>Deputy Director</td>
<td>a.dobermann@cgiar.org</td>
</tr>
</tbody>
</table>
Appendix B

Potential Graduate-Faculty-Eligible Ph.D. Scientists at Selected Variety Development Companies

<table>
<thead>
<tr>
<th>Company</th>
<th>Scientist</th>
<th>Position</th>
<th>email</th>
</tr>
</thead>
<tbody>
<tr>
<td>BayerCropScience</td>
<td>Steve Calhoun</td>
<td>International Cotton & Rice Breeding Manager</td>
<td>steve.calhoun@bayer.com</td>
</tr>
<tr>
<td>Monsanto</td>
<td>Brian Gardunia</td>
<td>Breeder (corn) U.S. Regional and International Breeding Lead</td>
<td>brian.w.gardunia@monsanto.com</td>
</tr>
<tr>
<td>Monsanto</td>
<td>Cindy Green</td>
<td>Breeder (Cotton)</td>
<td>cynthia.green@monsanto.com</td>
</tr>
<tr>
<td>Monsanto</td>
<td>Darren Jones</td>
<td>Breeder (Cotton)</td>
<td>darren_jones@bellsouth.net</td>
</tr>
<tr>
<td>Harris Moran Seed Co.</td>
<td>Ray Kenneth</td>
<td>Breeder (Tomato)</td>
<td>r.kettett@hmclause.com</td>
</tr>
<tr>
<td>Pioneer</td>
<td>Polly Longenberger</td>
<td>Breeder (Corn)</td>
<td>polly.longenberger@pioneer.com</td>
</tr>
</tbody>
</table>

37