New Courses
Texas A&M University

Departmental Request for a New Course
Undergraduate • Graduate • Professional
• Submit original form and attach a course syllabus.

Form Instructions
1. Course request type:
 □ Undergraduate ✔ Graduate □ First Professional (DDS, MD, JD, PharmD, DVM)
2. Request submitted by (Department or Program Name):
 Department of Biochemistry and Biophysics
3. Course prefix, number and complete title of course:
 BICH 679 Building Scientific Relationships

4. Catalog course description (not to exceed 50 words):
 Addressing aspects of human element of scientific research: emotional and cultural intelligence, resiliency, team dynamics, leadership, effective communication with others, strategies for conflict resolution and best practices for mentoring undergraduate students.

5. Prerequisite(s):
 Successful completion of one year of graduate study and affiliation with a research laboratory in life science

6. Cross-listed with:
 MGMT 674
 Stacked with:

 Cross-listed courses require the signature of both department heads.

7. Is this a variable credit course?
 □ Yes ✔ No If yes, from ________ to ________

8. Is this a repeatable course?
 □ Yes ✔ No If yes, this course may be taken ________ times.
 Will this course be repeated within the same semester?
 □ Yes □ No

9. Will this course be submitted to the Core Curriculum Council?
 □ Yes ✔ No

10. How will this course be graded?
 ✔ Grade □ S/U □ P/F (CL/MD)

11. This course will be:
 a. required for students enrolled in the following degree program(s) (e.g., B.A. in history)

12. If other departments are teaching or are responsible for related subject matter, the course must be coordinated with these departments. Attach approval letters.

13. Prefix Course # Title (excluding punctuation):

 BICH 679 BUILDING SCIENTIFIC RELTIONSHP

 Lect. Lab Other SCH CIP and Fund Code Admin. Unit Acad. Year EICL Code
 1.00 0.00 0.00 1.00 5202130016 0420 16 - 17 0 0 3 6 3 2

 Approval recommended by:
 Gregory D. Reinhart
 Department Head or Program Chair (Type Name & Sign) Date

 Chair, College Review Committee
 Date

 Dean of College
 Date

 Submitted to Coordinating Board by:
 Chair, OC or IUCE
 Date

 Effective Date

Questions regarding this form should be directed to Sandra Williams at 845-8201 or sandra.williams@tamu.edu.
Curricular Services – 07/14
July 20, 2015

MEMORANDUM

TO: LaRhesa Johnson, Graduate Student Specialist III
Office of Graduate and Professional Studies

FROM: Rafael R. Almanzar
Senior Academic Advisor

SUBJECT: Request for new course (BICH 679/MGMT 674 – Building Scientific Relationships)

Please find enclosed the request from the Department of Biochemistry & Biophysics, along with the Department of Management in the Mays Business School, a new course, BICH 679/MGMT 674 – Building Scientific Relationship. The course is in process and will appear on the agenda at the next Graduate Program Council meeting. In addition, a course syllabus is attached.

If you should have any questions regarding the request, please contact me by phone at 845-1779 or by email at r.almanzar1@tamu.edu. Thanks.
BICH679/ MGMT674 BLD SCI Relationships (Building Scientific Relationships)
Fall 2015
1-2:45 pm, Mondays and Wednesdays, November 2-Nov 30 (except Thanksgiving Wednesday)
Place: Room N203 Bio/Bio

Course Description:
One of the most neglected, but critical aspects of your scientific training, is learning how to build and sustain mutually beneficial relationships with colleagues. This 1 hour module will address aspects of the “human element” of scientific research: emotional and cultural intelligence, resiliency, team dynamics, leadership, effective communication with your PI and lab mates, strategies for conflict resolution and best practices for mentoring undergraduate students. Case studies will be used to depict real-life laboratory situations and practical advice for navigating the often murky waters surrounding your most important scientific relationships.

Prerequisites:
Successful completion of one year of graduate study and affiliation with a research laboratory in the life sciences.

Learning Outcomes:
Students who complete this course will gain an understanding of the basic principles of cultural and emotional intelligence, personality types and principles of group dynamics, effective models of leadership, mechanisms for identifying the basis of conflict and resolving conflict, and will acquire greater communication skills. Students will also gain insight into best practices for mentoring undergraduate students.

Instructor Information:
Dr. Dorothy Shippen
Department of Biochemistry and Biophysics
979-862-2342
dshippen@tamu.edu
413 Biochemistry/Biophysics
Office hours by appointment

Dr. Daria Panina
Department of Management
979-845-4848
Ppanina@mays.tamu.edu
483H Wehner Building
Office hours by appointment

Textbook and/or Resource Material:
Selected readings from the Harvard Business Review, Molecular Cell, Nature and others as assigned. Case studies from the Stanford Graduate School of Business will be used extensively.

Course Format:
The course will consist of a combination of lectures and case studies where real-life management situations are discussed. Some case studies will be provided by the instructors, and others will be contributed by students, who will be responsible for developing and presenting plausible scenarios related to the class material, and leading the discussion.

Grading Policy: Grading will be based on attendance, class participation and student presentations as follows:
Attendance: 10% (10 pts)
Participation in group discussions: 60% (60 pts)
Case study design, research and presentation: 30% (30 pts)
Letter grades will be assigned based on the following scale: A: 90 points or higher; B: 80-89 points; C: 70-79 points; D: 60-69 points; F: less than 60 points
Attendance Policy:
Make up policy:
Your course grade is based largely on class participation. If an absence is excused, the instructor will prove the student with an opportunity to contribute during the next (or prior) class period through discussion or by participating in an additional case study. Students are responsible for providing satisfactory evidence to the instructor to substantiate the reason for the absence. See student Rule 7 for details http://student-rules.tamu.edu/rule07
The fact that there are university-excused absences does not relieve the student of responsibility for prior notification and documentation. Failure to notify and/or document properly may result in an unexcused absence. Falsification of documentation is a violation of the Aggie Honor Code http://aggiehonor.tamu.edu

American with Disabilities Act (ADA):
The Americans with Disabilities Act (ADA) is a federal anti-discrimination statute that provides comprehensive civil rights protection for persons with disabilities. Among other things, this legislation requires that students with disabilities be guaranteed a learning environment that provides for reasonable accommodation of their disabilities. If you believe you have a disability requiring an accommodation, please contact Disability Services, in Cain Hall, Room B11B8, or call 845-1637. For additional information visit http://disability.tamu.edu

Academic Integrity:
"An Aggie does not lie, cheat, or steal, or tolerate those who do."
For additional information please visit: http://aggiehonor.tamu.edu

Course Topics and Schedule

Note: The course meets for 1 month (Monday and Wednesday afternoons during the month of November). The condensed schedule allows for intensive discussion and focused student participation.

11/2 **Introduction to emotional intelligence** -
Stanford case study: 1.1 “Shining without alienating”
Testing emotional intelligence: http://greatergood.berkeley.edu/ei_quiz/

11/4 **The importance of resiliency: learning from setbacks and mistakes**
Stanford case study: 7.2 “Learning from a mistake”
TED talk: Amy Cuddy: "Your body language shapes who you are"
www.asaecenter.org/bookstore.
11/9
Team dynamics: the importance of the weakest link
This American Life – "Ruining it for the rest of us" NPR podcast
Case study: "Slackers"
The effect of social loafing on productivity
Stanford case study- 1.4. "Technical prima donna"

11/11
Moving toward leadership
Expectations and leadership styles
Stanford case study 6.5 "Bad Boss"
Stanford case study "Managing up"

11/16
Cultural Intelligence
Understanding different communication in different cultural contexts
Stanford case study- 4.5 "Power challenge"
Case Study: "The careless collaborators"
STUDENT CASE STUDY 1

11/18
Mentoring undergraduates in the lab: a new perspective on teaching
Stanford case study - 3.3 "Personal problems"
STUDENT CASE STUDY 2

11/23
Motivating others who aren't like you
Stanford case study 4.4 "Unmotivated subordinate"
Stanford case study: 4.3 "Reaching Generation Y?"
The FISH philosophy
STUDENT CASE STUDY 3

11/25
Thanksgiving Holiday

11/30
Conflict management
Styles of conflict management
Stanford case study- 6.2 "Working with difficult peers".
STUDENT CASE STUDY 4
Texas A&M University
Departmental Request for a New Course
Undergraduate • Graduate • Professional
Submit original form and attach a course syllabus.

1. Course request type: □ Undergraduate ✓ Graduate □ First Professional (OD, PA, PharmD, DVM)

2. Request submitted by (Department or Program Name): Department of Biomedical Engineering
BMEN 637, Pathologic Basis of Implantable Devices

3. Course prefix, number and complete title of course: BMEN 637, PATHOL BASIS IMPLANT DEVICES

4. Catalog course description (not to exceed 50 words):
Understanding the relationship that clinical presentation has for patients with primary heart disease; inflammation and repair, systemizing pathology emphasis on cardiovascular disease, and the implantable device intervention as a therapeutic adjunct in the heart.

5. Prerequisite(s): Graduate classification or approval of instructor

6. Is this a variable credit course? □ Yes ✓ No
If yes, from _____ to _____

7. Is this a repeatable course? □ Yes ✓ No
If yes, this course may be taken _____ times.

8. Will this course be repeated within the same semester? □ Yes ✓ No

9. Will this course be submitted to the Core Curriculum Council? □ Yes ✓ No

10. How will this course be graded: ✓ Grade □ S/U □ P/F (CLMD)

 a. required for students enrolled in the following degree program(s) (e.g., B.A. in history)

 b. an elective for students enrolled in the following degree program(s) (e.g., M.S., Ph.D. in geography)

11. If other departments are teaching or are responsible for related subject matter, the course must be coordinated with these departments. Attach approval letters.

12. ✓ I verify that I have reviewed the FAQ for Export Control Basics for Distance Education (http://vsc.tamu.edu/resources/export-controls/export-controls-basics-for-distance-education).

13. Prefix Course # Title (excluding punctuation)
 BMEN 637 PATHOL BASIS IMPLANT DEVICES

Lect. Lab Other SCH CPI and Fund Code Admin. Unit Acad. Year SCE:Code
3.00 0.00 0.00 3.00 1405010006 0450 16 17 0 0 3 6 3 2

Approval recommended by:
Gerard L. Cole

Department Head or Program Chair (Type Name & Sign) Date Chair, College Review Committee Date

Department Head or Program Chair (Type Name & Sign) Date Chair, College Review Committee Date

Submitted to Coordinating Board by:
Associate Director, Curricular Services

Date Effective Date

Questions regarding this form should be directed to Sandra Williams at 845-8201 or sande-williams@tamu.edu
Curricular Services – 07/14
Course: BMEN 637
M/W, 4:10 – 5:25 pm, ETB 1006

Course Title: Pathologic Basis of Implantable Devices

Instructor: Fred J. Clubb, Jr., DVM, PhD,
Office: bldg 1040,
Phone: 979/229-9862,
E-mail: deadbeatdoc@tamu.edu

Textbook: Robbins and Cotran Pathologic Basis of Disease (Inkling Chapters: 1-4, 6, 7, 11 & 12)
Kumar, Robbins and Cotran Pathologic Basis of Disease (5th Ed, TAMU eBook)
Robbins Basic Pathology, by Vinay Kumar, Adul Abbas, Nelson Fausto and Richard Mitchell.

Reference Texts:
An Introduction to Tissue-Biomaterial Interactions, by Kay Dee, David Puleo and Rena Bizios.
Handbook of Cardiac Anatomy, Physiology and Devices, by Paul Iaizzo.

Course Description:
This course will provide an understanding of the relationship that clinical presentation has for patients with primary heart disease; including lectures focused on general categories of inflammation and repair, systemic pathology emphasis on cardiovascular disease, and the importance elucidated on implantable device intervention as a therapeutic adjunct in heart disease.

Objectives and learning outcomes:
- Students will understand the physiological response of biological systems to implantable devices.
- Students will be able to describe the methods used in the pathology of medical devices and the tools used to study the interactions between biological systems and implantable devices.

Prerequisites: Graduate school classification or approval of instructor.

<table>
<thead>
<tr>
<th>Outline of Subject Matter</th>
<th>Week(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Pathology (Introduction)</td>
<td>1</td>
</tr>
<tr>
<td>Basic Pathology (Cellular and Tissue Responses)</td>
<td>1-3</td>
</tr>
<tr>
<td>Basic Pathology (Inflammation, Immunity)</td>
<td>4-5</td>
</tr>
<tr>
<td>Basic Pathology (Hemodynamic Disorders)</td>
<td>6</td>
</tr>
<tr>
<td>Basic Pathology (Healing and Repair)</td>
<td>7</td>
</tr>
<tr>
<td>Midterm Exam – October 14</td>
<td>7</td>
</tr>
<tr>
<td>Basic Pathology (Neoplasia)</td>
<td>8</td>
</tr>
<tr>
<td>Systemic Pathology (Cardiovascular – Anatomy and Physiology)</td>
<td>9</td>
</tr>
<tr>
<td>Systemic Pathology (Cardiovascular – Heart Failure)</td>
<td>9</td>
</tr>
<tr>
<td>Systemic Pathology (Cardiovascular – Congenital Heart Disease)</td>
<td>10</td>
</tr>
<tr>
<td>Systemic Pathology (Cardiovascular – Pericardial, Epi- and Endocardial Diseases)</td>
<td>10</td>
</tr>
<tr>
<td>Systemic Pathology (Cardiovascular – Myocardial Diseases)</td>
<td>11</td>
</tr>
<tr>
<td>Systemic Pathology (Cardiovascular – Peripheral Vascular Diseases)</td>
<td>12</td>
</tr>
<tr>
<td>Therapeutic use of Implantable Devices (Pathophysiologic Overview)</td>
<td>13</td>
</tr>
<tr>
<td>Course Review</td>
<td>14</td>
</tr>
<tr>
<td>Final Exam – December 14</td>
<td>15</td>
</tr>
</tbody>
</table>

Evaluation:
Class Participation: 20%
Exams: 80% (mid-term 40%/final 40%)
100-90%.......A
80-89%.......B
• Attendance: Only University excused absences will be accepted for makeup exams/quizzes to be given. In accordance with University policies which can be found online at http://student-rules.tamu.edu/rule7.htm.

• Note: It is the student’s responsibility to make arrangements to reschedule exams/quizzes. Exams and quizzes must be completed in accordance with University policies which can be found online at http://student-rules.tamu.edu/rule7.htm.

Americans with Disabilities Act
The American with Disabilities Act (ADA) is a federal antidiscrimination statute that provides comprehensive civil rights protection for persons with disabilities. Among other things, this legislation requires that all students with disabilities be guaranteed a learning environment that provides for reasonable accommodation of their disabilities. If you believe you have a disability requiring an accommodation, please contact the Department of Student Life, Services for Students with Disabilities in Room B118 of Cain Hall, or call 845-1637.

Academic Integrity
Aggie Code of Honor: "Aggies do not lie, cheat, or steal, nor do they tolerate those who do."
It is the responsibility of students to help maintain scholastic integrity at the university by refusing to participate in or tolerate scholastic dishonesty, which can be found online at http://aggiehonors.tamu.edu.
Texas A&M University
Departmental Request for a New Course
Undergraduate • Graduate • Professional
• Submit original form and attach a course syllabus.

1. Course request type:
 □ Undergraduate □ Graduate □ First Professional (DDS, MD, JD, PharmD, DVM)

2. Request submitted by (Department or Program Name):
 Department of Electrical and Computer Engineering

3. Course prefix, number and complete title of course:
 ECEN 767 Harnessing Solar Energy: Optics, Photovoltaics and Thermal Systems

4. Catalog course description (not to exceed 50 words):
 Solar radiation characteristics and measurement; optical coatings including reflection, transmission, absorption and emissivity; concentrating optics, tracking and field limit; photovoltaic cells, modules and systems overview; introduction to solar thermal systems.

5. Prerequisite(s):
 Graduate classification or approval of instructor.
 Cross-listed with: ECEN 467

6. Is this a variable credit course?
 □ Yes □ No
 If yes, from _____ to _____

7. Is this a repeatable course?
 □ Yes □ No
 If yes, this course may be taken _____ times.

8. Will this course be repeated within the same semester?
 □ Yes □ No

9. Will this course be submitted to the Core Curriculum Council?
 □ Yes □ No

10. How will this course be graded:
 □ Grade □ S/U □ P/F (CLMD)

11. This course will be:
 a. required for students enrolled in the following degree programs(s) (e.g., B.A. in history)
 b. an elective for students enrolled in the following degree program(s) (e.g., M.S. Ph.D. in geography)

12. M.S., M.E., Ph.D. in ELEN or CEEN

13. Prefix Course # Title (excluding punctuation)
 ECEN 767 HARNESSING SOLAR ENERGY

 Level 4th Other SCH CIP and Field Code Admin. Last Year- Year HUC Code
 3.00 3.00 4.00 1410010006 0936 16 - 17 0 0 3 6 3 2

 Approval recommended by:
 Jose Silva-Marin
 Department Head or Program Chair (Type Name & Sign) Date
 Chair, College Review Committee Date

 Department Head or Program Chair (Type Name & Sign) (if cross-listed course) Date
 Dean of College Date

 Submitted to Coordinating Board by:
 Chair, UVCC & UCC Date

 Effective Date

Questions regarding this form should be directed to Sandra Williams at 845-8201 or sandra-williams@tamu.edu

Curricular Services – 07/14
Course title and number: Harnessing Solar Energy: Optics, Photovoltaics and Thermal Systems
ECEN 467

Term: Spring TBA

Lecture times and location: TR 2:20-3:35PM, JEB 7xx
Section 501/601: TBD
Section 502/602: TBD
Section 503/603: TBD
Section 504/604: TBD
Section 505/605: TBD
Section 506/606: TBD

Official Class Syllabus: Posted on ecampus.tamu.edu

Course Description and Prerequisites:
Solar radiation characteristics and measurement; Optical coatings including reflection, transmission, absorption and emissivity; Concentrating optics, tracking and etendue limit; Photovoltaic cells, modules and systems overview. Introduction to solar thermal systems.

Prerequisites: Grade of C or better in ECEN 322 and ECEN 370; junior or senior classification.

Learning Outcomes or Course Objectives:
- Describe and analyze optical coatings, including their refraction, absorption, transmission and reflection properties and wavelength dependence
- Describe the physical basis for light-matter interactions and energy conversion, including those underlying optical detectors for different wavelength ranges and for photovoltaic cells
- Apply optical analysis tools including ray optics, Gaussian beams, and diffraction to basic optical systems incorporating concentrating lenses and mirrors, understand etendue limit for concentrating systems
- Analyze fundamental properties and limitations of photovoltaic cells, particularly as they relate to efficiency and various factors impacting efficiency
- Develop laboratory skills and ability to measure solar irradiance, as well as the input and output energy for basic solar photovoltaic and thermal systems for calculating system efficiency

Instructor Information
Name: Christi Madsen
Telephone number: 979-845-4935
Email address: cmadsen@tamu.edu
Office hours: After lectures or by appointment
Office location: JEB 724
TA: TBA

Textbook and/or Resource Material:
- Wenham and Green, Applied Photovoltaics, (2007), available online through library, Ch. 1-6.
- Kalogirou, Solar Energy Engineering: Processes and Systems (2009), available online through library, Ch. 3-5.
Class Policies and Grading

Policies:
1. You are expected to attend all lectures and your assigned lab time.
2. Unexcused late work will be penalized 10% per day and in accordance with the university excused absence and attendance policy. See http://student-rules.tamu.edu/rule07.
3. Lab reports should be done on a word processor and printed for submission to the TA.
4. Graduate students taking ECEN 767 will be assigned 20% more problems in labs and tests compared to undergraduate students taking ECEN 467.

Grading:
Lab Reports (Lab Project report is treated as one of the lab reports) 50%
Midterm Exam 15%
Final Exam 35%
Grading scale: 90-100 A, 80-89 B, 70-79 C, 60-69 D, below 60 F.
Mid-term Exam: TBD Final Exam: TBD
Project Report Deadline: TBD by 5pm. Submit report by email.

Lecture Schedule

<table>
<thead>
<tr>
<th>Week 1</th>
<th>Introduction & Lab Safety</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 2-3</td>
<td>Solar Irradiance: Global, Diffuse and Direct</td>
</tr>
<tr>
<td>Week 4-5</td>
<td>Transmission, Reflection, Absorption, and Emissivity</td>
</tr>
<tr>
<td>Week 6-7</td>
<td>Optical Coatings & Applications</td>
</tr>
<tr>
<td>Week 8</td>
<td>Concentrating Optics & Diffraction</td>
</tr>
<tr>
<td>Week 9-10</td>
<td>Photovoltaic Conversion: Cells, Efficiency limits</td>
</tr>
<tr>
<td>Week 11</td>
<td>Photovoltaic Systems</td>
</tr>
<tr>
<td>Week 12-13</td>
<td>Solar to thermal energy conversion</td>
</tr>
<tr>
<td>Week 14</td>
<td>Solar thermal systems</td>
</tr>
</tbody>
</table>

Lab Schedule

<table>
<thead>
<tr>
<th>Lab#</th>
<th>Title</th>
<th>Week</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Safety & Introduction</td>
<td>1</td>
<td>Safety and Introductory material</td>
</tr>
<tr>
<td>1</td>
<td>Solar Irradiance</td>
<td>2-3</td>
<td>Photodetectors and thermal detectors, Measuring global, diffuse and direct irradiance</td>
</tr>
<tr>
<td>2</td>
<td>Basic Optical Measurements</td>
<td>4-5</td>
<td>Learn about and use broadband source and diffraction gratings for wavelength-dependent measurements</td>
</tr>
<tr>
<td>3</td>
<td>Optical thin film coatings</td>
<td>6-7</td>
<td>Measure transmission and reflection, calculate absorption and emissivity</td>
</tr>
<tr>
<td>4</td>
<td>Concentrating optics</td>
<td>8</td>
<td>Measure concentration factor and estimate efficiency of concentrating optics and tracking requirements</td>
</tr>
<tr>
<td>5</td>
<td>Photovoltaic cells</td>
<td>9-11</td>
<td>Measure I-V characteristics and single and multi-junction photovoltaic cells, calculate efficiency, measure modules and overall output of a small PV system</td>
</tr>
<tr>
<td>6</td>
<td>Solar thermal systems</td>
<td>12-14</td>
<td>Measure the input and output energy of a solar thermal system (evacuated tube system) and calculate system efficiency, compare to PV system</td>
</tr>
</tbody>
</table>
Americans with Disabilities Act (ADA)
The Americans with Disabilities Act (ADA) is a federal anti-discrimination statute that provides comprehensive civil rights protection for persons with disabilities. Among other things, this legislation requires that all students with disabilities be guaranteed a learning environment that provides for reasonable accommodation of their disabilities. If you believe you have a disability requiring an accommodation, please contact Disability Services, in Cain Hall, Room B118, or call 845-1637. For additional information visit http://disability.tamu.edu

Academic Integrity
For additional information please visit: http://aggiehonor.tamu.edu

"An Aggie does not lie, cheat, or steal, or tolerate those who do."
Texas A&M University
Departmental Request for a New Course
Undergraduate • Graduate • Professional
• Submit original form and attach a course syllabus.

Form Instructions

1. Course request type: [] Undergraduate [x] Graduate [] First Professional (M.D., D.D.S., D.V.M., etc.)

2. Request submitted by (Department or Program Name): Mechanical Engineering

3. Course prefix, number and complete title of course: MEEN 660 - Corrosion Engineering

4. Catalog course description (not to exceed 50 words): Aqueous corrosion phenomena of the mixed potential theory; basics of electrochemical reactions; corrosion measurement; surface engineering and protection; case studies.

5. Prerequisite(s): MEEN 360, 475 or graduate classification
 Cross-listed with: ___________________________
 Stacked with: MEEN 460
 Cross-listed courses require the signature of both departmental heads.

6. Is this a variable credit course? [x] Yes [] No If yes, from _____ to _____

7. Is this a repeatable course? [x] Yes [] No If yes, this course may be taken _____ times.
 Will this course be repeated within the same semester? [] Yes [x] No

8. Will this course be submitted to the Core Curriculum Council? [] Yes [x] No

9. How will this course be graded? [x] Grade [] S/U [] P/F (CLMD)

10. This course will be:
 a. required for students enrolled in the following degree programs(s) (e.g., B.A. in history)
 b. an elective for students enrolled in the following degree program(s) (e.g., M.S., Ph.D. in geography)

 M.S., M.E.N., and Ph.D. in MEEN or MSEN

11. If other departments are teaching or are responsible for related subject matter, the course must be coordinated with these departments. Attach approval letters.

12. [x] I verify that I have reviewed the FAQ for Export Control Basics for Distance Education (http://vpr.tamu.edu/resources/export-controls/export-controls-basics-for-distance-education).

13. Prefix Course # Title (excluding punctuation)
MEEN 660 CORROSION ENGR

<table>
<thead>
<tr>
<th>Lect.</th>
<th>Lab</th>
<th>Other</th>
<th>SCH</th>
<th>CIP and Fund Code</th>
<th>Admin. Unit</th>
<th>Acad. Year</th>
<th>HCE Code</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.00</td>
<td></td>
<td></td>
<td>3.00</td>
<td>1419010006</td>
<td>1920</td>
<td>16 -</td>
<td>17</td>
<td>3 6 3 2</td>
</tr>
</tbody>
</table>

Approval recommended by:

Dr. Daniel McAdams Graduate Program Department Head or Program Chair (Type Name & Sign) Date

Chair, College Review Committee Date

Dean of College Date

9-3-15

Submitted to Coordinating Board by:

Associate Director, Curricular Services Date

Effective Date

Questions regarding this form should be directed to Sandra Williams at 845-8201 or sandra.williams@tamu.edu.
Curricular Services – 07/14
Fall 2015
MEEN 660, Corrosion Engineering
Credits: 3.0
TR: 8:00 am – 9:15 am, MPH 107

Catalog Description:
Aqueous corrosion phenomena of the mixed potential theory; basics of electrochemical reactions; corrosion measurement; surface engineering and protection; case studies.

Prerequisites: MEEN 360, 475 or graduate standing.

Stacked: MEEN 460

Goals: To develop an understanding of the physical principles of corrosion and control. Learn to apply those principles to design, problem solving, and technology development.

Course Web Pages: TBA

Instructor: Dr. H. Liang, Engineering Physics Building (ENPH), Room 323. Phone: 862-2623, Email: hliang@tamu.edu

Office Hours: TBA

Teaching Assistant: TBA

TA Office Hours: TBA

Homework and Exams:
Homework is due one week after it is assigned. No credits are given to late homework. There is no make-up quiz unless absence is documented. Exams must be taken as scheduled.

Labs:
Lab safety procedures are strictly followed. Labs must be done on time as a team. Data sheets and report are done on time.

Project:
Project report must be due on time. The decision is made by the instructor.
Course Credit: Credits are distributed as follows:

- HWs 15%
- Exams 50%
- Lab 15%
- Project 20%

Grade Basis: A > 90; 80 < B < 90; 70 < C < 80.

ADA Policy: The Americans with Disabilities Act (ADA) is a federal anti-discrimination statute that provides comprehensive civil rights protection for persons with disabilities. Among other things, this legislation requires that all students with disabilities be guaranteed a learning environment that provides for reasonable accommodation of their disabilities. If you believe you have a disability requiring an accommodation, please contact Disability Services (disability.tamu.edu) in Room B118 of Cain Hall or call 845-1637.

Aggie Honor Code: "An Aggie does not lie, cheat, or steal, or tolerate those who do." It is the responsibility of students and instructors to help maintain scholastic integrity at the university by refusing to participate in or tolerate scholastic dishonesty. Conduct contradicting to this policy will be punished according to the current rules and regulations. For details, see http://www.tamu.edu/aggiehonor/

The following statement should be printed and signed on all assignments and examination cover pages: "On my honor, as an Aggie, I have neither given nor received unauthorized aid on this academic work."

<table>
<thead>
<tr>
<th>Signature of student</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Week</th>
<th>Chapters</th>
<th>Topic/Exam Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 & 2</td>
<td>Introduction & Significance</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>Galvanic & Concentration Cells</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>Pitting & Crevice</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>Corrosion Cracking</td>
</tr>
<tr>
<td>5</td>
<td>9</td>
<td>Microstructure</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>Pourbaix Diagrams</td>
</tr>
<tr>
<td>7</td>
<td>11</td>
<td>Environmental effects</td>
</tr>
<tr>
<td>8</td>
<td>12</td>
<td>Atmospheric & high-T corrosion</td>
</tr>
<tr>
<td>9</td>
<td>13</td>
<td>Cathodic protection</td>
</tr>
<tr>
<td>10</td>
<td>14</td>
<td>Coatings & inhibitors</td>
</tr>
<tr>
<td>11</td>
<td>15</td>
<td>Materials selection</td>
</tr>
<tr>
<td>12</td>
<td>3-5</td>
<td>Fundamentals</td>
</tr>
</tbody>
</table>
Supplementary Reading List:

Books

Journals
1. Corrosion TA/462/C6.5
2. Corrosion Abstracts TA/462/C6.52
3. Corrosion Prevention & Control TA/462/C6.57
5. Materials Performance TA/462/M3.7

Professional Society
NACE, National Association of Corrosion Engineers
P.O. Box 218340
Houston, TX 77218
281-492-0535
URL: www.NACE.org
The headquarters are located near Addicks, TX, in PARK 10.
Texas A&M University
Departmental Request for a New Course
Undergraduate • Graduate • Professional
• Submit original form and attach a course syllabus.

Form Instructions
1. Course request type: [] Undergraduate [X] Graduate [] First Professional (DOS, MD, JD, PharmD, IVMD)
2. Request submitted by (Department or Program Name): Mechanical Engineering
3. Course prefix, number and complete title of course: MEEN 669 Alternative Energy Conversion
4. Catalog course description (not to exceed 50 words): Design and analysis of alternative energy conversion processes and systems that are based on converting energy directly (e.g., fuel cells, photovoltaics), utilizing non-combustible heat sources (e.g., geothermal, ocean gradients, solar, and nuclear fission and fusion) and obtaining energy from the environment (e.g., wind, hydroelectric, ocean tides and waves).

5. Prerequisite(s): graduate classification
 Cross-listed with: MEEN 469
 Stacked with: MEEN 469
 Cross-listed courses require the signature of both department heads.
6. Is this a variable credit course? [X] Yes [] No
 If yes, from _______ to _______
7. Is this a repeatable course? [X] Yes [] No
 If yes, this course may be taken _______ times.
8. Will this course be repeated within the same semester? [X] Yes [] No
9. Will this course be submitted to the Core Curriculum Council? [] Yes [X] No
10. How will this course be graded? [X] Grade [] S/U [X] P/F (CLMD)
11. This course will be:
 a. required for students enrolled in the following degree program(s) (e.g., B.A. in history)
 b. an elective for students enrolled in the following degree program(s) (e.g., M.S., Ph.D. in geography)
M.S., M.E., M.G., Ph.D. in Mechanical Engineering
12. [X] I verify that I have reviewed the FAQ for Export Control Basics for Distance Education (http://vpr.tamu.edu/resources/export-controls/export-control-basics-for-distance-education).
13. Prefix Course # Title (excluding punctuation)

<table>
<thead>
<tr>
<th>Course #</th>
<th>Title (excluding punctuation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEEN 669</td>
<td>ALTERNATIVE ENERGY CONVERSION</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lect.</th>
<th>Lab</th>
<th>Other</th>
<th>SCH</th>
<th>CIP and Fund Code</th>
<th>Admin. Unit</th>
<th>Acad. Year</th>
<th>HCL Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.00</td>
<td></td>
<td></td>
<td>3.00</td>
<td>1419010006</td>
<td>1920</td>
<td>16 - 17</td>
<td>0 0 3 6 3 2</td>
</tr>
</tbody>
</table>

Approval recommended by: [Signature]

Dr. Daniel McAdams
Department Head or Program Chair (Type Name & Sign) Date 8/6/15

Chair, College Review Committee
Date 8/6/15

Department Head or Program Chair (Type Name & Sign) Date

Dear of College
Date

Submitted to Coordinating Board by:

Date

Associate Director, Curricular Services

Date

Effective Date

Questions regarding this form should be directed to Sandra Williams at 845-8201 or sandra.williams@tamu.edu.
Curricular Services - 07/14
August 6, 2015

MEMORANDUM

To: John Criscione
 Chair, GIC

From: Steve Searcy
 Professor and Head

Subject: Subject matter overlap between BAEN 614 and proposed MEEN 669

The instructors of the relevant courses, Sergio Capareda and Michael Pate, met and discussed their respective courses. Our observations from that conversation are the following.

- There is significant overlap in the subject matter of the two courses.
- The two courses have different instructional goals. BAEN 614 is taught as a lecture/lab course with assignments that focus on the analysis and design of renewable energy systems in specific sites and situations. MEEN 669, when as taught as 689, has been “lecture” only, with a focus on the breadth of alternative energy sources and uses, and uses assignments that generally expect essay type responses from students.
- Dr. Pate indicated that the MEEN course could be an appropriate prerequisite to the BAEN 614 course and offered to inform the MEEN students about BAEN 614 and to invite Dr. Capareda to present material on biomass energy when that topic is covered in MEEN 669.
- Drs. Capareda and Pate have agreed to collaborate to enhance both courses.

Based upon these differences between the courses and the intended future collaboration between the two instructors, BAEN has no reservation about approving MEEN 669 as a permanent course offering.

cc: Sergio Capareda
 Sandun Fernando
 Andreas Polycarpou
 Michael Pate
MEEN 469/669 Syllabus
Alternative Energy Conversion
Fall 2016

Instructor: Dr. Michael Pate
Office: 317 Engineering/Physics Building
Classroom: ENPH 202
Credits) 979-458-2264
mpate@tamu.edu
Time: MWF 10:20 – 11:10 AM
Office Hours: TBD

Course Catalog Description:
Design and analysis of alternative energy conversion processes and systems that are based on converting energy directly (e.g., fuel cells, photovoltaics), utilizing non-combustible heat sources (e.g., geothermal, ocean gradients, solar, and nuclear fission and fusion) and obtaining energy from the environment (e.g., wind, hydroelectric, ocean tides and waves).

Course Objectives:
The objective is to provide the engineering principles required to analyze, design and evaluate alternative energy conversion processes and systems. The skills required to compare the various technologies from both a technical, economic and feasibility standpoint will be provided.

Course Text:
There is not an assigned text; rather, students will utilize instructor notes, contemporary literature/publications and the internet as directed.

Class Attendance:
Class attendance is mandatory and will be taken daily. Student Rule 07 applies regarding attendance and the excusing of absences; see http://student-rules.tamu.edu/rule07. It is the student’s responsibility to maintain and submit upon request email documentation with the instructor for excused absences. Two unexcused absences result in a 5% final grade reduction, while two more unexcused absences equal another 5%, etc. If you do miss class for a valid reason (i.e. excused absence), make sure that you have a contact person who can get you a copy of the homework and tell you what material was covered in class that day.

Grading System:
At the conclusion of the course, grades will be assigned based on each student’s performance as measured by the average percent score for the semester as follows:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>90 - 100%</td>
</tr>
<tr>
<td>B</td>
<td>80 < 90%</td>
</tr>
<tr>
<td>C</td>
<td>70 < 80%</td>
</tr>
<tr>
<td>D</td>
<td>65 < 70%</td>
</tr>
<tr>
<td>F</td>
<td>0 < 65%</td>
</tr>
</tbody>
</table>
Homework/Projects (70% of grade):

You will be assigned anywhere from 25-35 homework exercises, and they are always due at the next class period. With regards to grading HW, the following four areas will be evaluated as shown:

1. Methodology/neatness/organization 0 1 2 3
2. Equations/calculation/numerical/unites 0 1 2 3
3. Comments/discussion/reflections 0 1 2 3
4. Lessons learned 0 1

As you can see, plugging and chugging to get an answer, even if correct, is only about 30% of the total credit. Many HW problems will not involve calculations, but rather they will address "critical thinking" essay questions, which require considerable knowledge-gathering over the internet. In this latter case, your written response to the questions should always be in your own words. Violations of this policy will be considered a violation of the "Aggie Honor Code," and will be dealt with accordingly. As a final note, all of the writings that you turn in can be first-draft material, rather than polished.

Homework will be graded by using a letter grade approach that is converted to a numerical score at the end of the course as follows:

A + (10),	B (8),	F+ (4),
A (9.5),	C (7),	F (2),
A- (9),	D (6),	F- (0).

If you turn in homework late, then your maximum score will reduced to a "C", and then a full letter grade for each late class period thereafter. Even if you have an excused absence from class, you are still responsible for doing the homework, without a late penalty. (turn in as soon as possible, but no more than one week after the missed class)

HLO's (30% of grade):
HLO's (High Learning Opportunities) are in-class exercises that consist of you working with a partner. At the end of class, they are collected and graded for "effort" rather than "content" (otherwise they would be called quizzes). The grading scale will be similar to that used for homework. We will do about 30 of these over the duration of the course. If you have an unexcused absence, you will receive zero points for that day's HLO. If you have an excused absence, missing the HLO will not hurt your final course score, and you do not need to make up the HLO.

Stacked Course—Graduate Students (additional work and grading scheme)
Graduate Students enrolled in the class will be given a graded end-of-course project consisting of both a written report and a class presentation, which will count as 10% of their grade. For the case of graduate students, the HW percentage will be changed to 60% to accommodate this graded project.
Class Notebook:
You are required to maintain a "class notebook/portfolio" that you should keep updated with all of your graded work (HW’s and HLO’s). This notebook/portfolio will be periodically collected and evaluated. It is your responsibility to keep track of all your scores (HW and HLO’s), and in this regard, your notebook/portfolio should also contain a "score sheet" (supplied by me) showing points awarded and maximum points possible for all of your assignments. At the end of the course, this score sheet (which you need to keep up to date) will be used as a check-off when I go through your graded work again to calculate your final grade (as such, you will not get credit for work that is lost or omitted from your notebook). If you want, you can keep handouts and class notes (taken by you) in a separate file, which I will not collect.

List of Topics: (Not necessarily in order of coverage)
- Introduction and Principles of Energy Conversions
- Fossil Fuels and the Environment
- Solar Energy Basics
- Solar Energy for Power Production
- Fuel Cells and the Hydrogen Economy
- Electric and Hybrid Cars
- Wind Power Production
- Power Production from Nuclear Fission and Fusion Processes
- Geothermal Energy Conversion and Production
- Hydroelectric Energy Production – Lakes and Rivers
- Ocean Waves, Tidal and Thermal Energy
- Biomass Energy Production and Use
- Energy Storage Technologies
- Advanced Energy Concepts
- Evaluation and Comparison of Technologies

Course Learning Outcomes:
At the end of this course, students should be able to:
1. Understand and apply the general energy and mass conservation equations to a wide variety of alternative energy conversion processes and systems.
2. Formulate and apply assumptions to real-world alternative energy conversion technologies for the purpose of developing mathematical models for design and analysis.
3. Perform alternative energy engineering calculations with an understanding of their accuracy and relationship to the real-world of energy engineering.
4. Provide a conceptual understanding of a wide range of alternative energy conversion technologies to include precise knowledge of processes, components and systems that comprise each technology.
5. Understand the potential that each individual alternative energy conversion technology has for contributing to reductions in fossil-fuel use while at the same time appreciating the limitations and challenges that must be addressed for real-world applications.
Americans with Disabilities Act (ADA) Policy Statement
The Americans with Disabilities Act (ADA) is a federal anti-discrimination statute that provides comprehensive civil rights protection for persons with disabilities. Among other things, this legislation requires that all students with disabilities be guaranteed a learning environment that provides for reasonable accommodation of their disabilities. If you believe, you have a disability requiring an accommodation, please contact Disability Services (disability.tamu.edu) in Room B118 of Cain Hall or call 845-1637.

Academic Integrity Statement
Aggie Honor Code: "An Aggie does not lie, cheat, or steal, or tolerate those who do."
It is the responsibility of students and instructors to help maintain scholastic integrity at the university by refusing to participate in or tolerate scholastic dishonesty (Student rule 20. Scholastic Dishonesty, http://student-rules.tamu.edu). New procedures and policies have been adopted effective September 1, 2004. Details are available through the Office of the Aggie Honor System (http://www.tamu.edu/aggiehonor/). An excerpt from the Philosophy & Rationale section states: “Apathy or acquiescence in the presence of academic dishonesty is not a neutral act—failure to confront and deter it will reinforce, perpetuate, and enlarge the scope of such misconduct. Academic dishonesty is the most corrosive force in the academic life of a university.”

Additional Information:
Office hours will be established and posted during the first week of classes. If necessary, feel free to contact me at other times for help, however if you stop by at times other than office hours, I may be in labs or at meetings. You can also email me at mpate@tamu.edu if you have questions.
Please discuss any special needs or special accommodations with me at the beginning of the semester or as soon as you become aware of your needs.
Texas A&M University

Departmental Request for a New Course
Undergraduate • Graduate • Professional
* Submit original form and attach a course syllabus.

Form Instructions
1. Course request type: □ Undergraduate ☑ Graduate □ First Professional (DDS, MD, JD, PharmD, DVM)
2. Request submitted by (Department or Program Name): □ Department of Management
 MGMT 674 Building Scientific Relationships

3. Catalog course description (not to exceed 50 words):
 Addressing aspects of human element of scientific research: emotional and cultural intelligence, resiliency, team dynamics, leadership, effective communication with others, strategies for conflict resolution and best practices for mentoring undergraduate students.

5. Prerequisite(s):
 Cross-listed with: BICH 679 Stacked with:
 Cross-listed courses require the signatures of both department heads.

6. Is this a variable credit course? □ Yes ☑ No If yes, from _____ to _____
7. Is this a repeatable course? □ Yes ☑ No If yes, this course may be taken _____ times.
 Will this course be repeated within the same semester? □ Yes □ No
8. Will this course be submitted to the Core Curriculum Council? □ Yes ☑ No P/F (CLMD)
9. How will this course be graded? ☑ Grade □ SAU
10. This course will be:
 a. required for students enrolled in the following degree program(s) (e.g., B.A. in history)
 b. an elective for students enrolled in the following degree program(s) (e.g., M.S., Ph.D. in geography)
 any master's or doctoral program

11. If other departments are teaching or are responsible for related subject matter, the course must be coordinated with these departments. Attach approval letters.
12. □ I verify that I have reviewed the FAQ for Export Control Basics for Distance Education (http://vpr.tamu.edu/resources/export- controls/export-controls-basics-for-distance-education).

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Course #</th>
<th>Title (excluding punctuation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGMT</td>
<td>674</td>
<td>BUILDING SCIENTIFIC RELTNSHP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Level.</th>
<th>Lab</th>
<th>Other</th>
<th>SCH</th>
<th>CRN</th>
<th>Unit Code</th>
<th>Admin. Unit</th>
<th>Acad. Year</th>
<th>P/F Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>5202130016</td>
<td>1780</td>
<td>16</td>
<td>17</td>
<td>0 0 3 6 3 2</td>
</tr>
</tbody>
</table>

Approval recommended by:
Wendy Boswell (Type Name & Sign) Date
Mary Lea McNamara (Type Name & Sign) Date

Department Chair or Program Chair Date
Department Chair or Program Chair Date
Submit to Coordinating Board by:
Associate Director, Curricular Services Date

Effective Date

Questions regarding this form should be directed to Sandra Williams at 845-8201 or sandra-williams@tamu.edu.
Curricular Services – 07/14
Course Description:
One of the most neglected, but critical aspects of your scientific training, is learning how to build and sustain mutually beneficial relationships with colleagues. This 1 hour module will address aspects of the "human element" of scientific research: emotional and cultural intelligence, resiliency, team dynamics, leadership, effective communication with your PI and lab mates, strategies for conflict resolution and best practices for mentoring undergraduate students. Case studies will be used to depict real-life laboratory situations and practical advice for navigating the often murky waters surrounding your most important scientific relationships.

Prerequisites:
Successful completion of one year of graduate study and affiliation with a research laboratory in the life sciences.

Learning Outcomes:
Students who complete this course will gain an understanding of the basic principles of cultural and emotional intelligence, personality types and principles of group dynamics, effective models of leadership, mechanisms for identifying the basis of conflict and resolving conflict, and will acquire greater communication skills. Students will also gain insight into best practices for mentoring undergraduate students.

Instructor Information:
Dr. Dorothy Shippen
Department of Biochemistry and Biophysics
979-862-2342
dshippen@tamu.edu
413 Biochemistry/Biophysics
Office hours by appointment

Dr. Daria Panina
Department of Management
979-845-4848
Dpanina@mays.tamu.edu
483H Wehner Building
Office hours by appointment

Textbook and/or Resource Material:
Selected readings from the Harvard Business Review, Molecular Cell, Nature and others as assigned. Case studies from the Stanford Graduate School of Business will be used extensively.

Course Format:
The course will consist of a combination of lectures and case studies where real-life management situations are discussed. Some case studies will be provided by the instructors, and others will be contributed by students, who will be responsible for developing and presenting plausible scenarios related to the class material, and leading the discussion.

Grading Policy: Grading will be based on attendance, class participation and student presentations as follows:
- Attendance: 10% (10 pts)
- Participation in group discussions: 60% (60 pts)
- Case study design, research and presentation: 30% (30 pts)

Letter grades will be assigned based on the following scale: A: 90 points or higher; B: 80-89 points; C: 70-79 points; D: 60-69 points; F: less than 60 points
Attendance Policy:
Make up policy:
Your course grade is based largely on class participation. If an absence is excused, the instructor will prove the student with an opportunity to contribute during the next (or prior) class period through discussion or by participating in an additional case study. Students are responsible for providing satisfactory evidence to the instructor to substantiate the reason for the absence. See student Rule 7 for details http://student-rules.tamu.edu/rule07. The fact that there are university-excused absences does not relieve the student of responsibility for prior notification and documentation. Failure to notify and/or document properly may result in an unexcused absence. Falsification of documentation is a violation of the Aggie Honor Code http://aggiehonors.tamu.edu.

American with Disabilities Act (ADA):
The Americans with Disabilities Act (ADA) is a federal anti-discrimination statute that provides comprehensive civil rights protection for persons with disabilities. Among other things, this legislation requires that students with disabilities be guaranteed a learning environment that provides for reasonable accommodation of their disabilities. If you believe you have a disability requiring an accommodation, please contact Disability Services, in Cain Hall, Room B118B, or call 845-1637. For additional information visit http://disability.tamu.edu.

Academic Integrity:
"An Aggie does not lie, cheat, or steal, or tolerate those who do."
For additional information please visit: http://aggiehonors.tamu.edu

Course Topics and Schedule

Note: The course meets for 1 month (Monday and Wednesday afternoons during the month of November). The condensed schedule allows for intensive discussion and focused student participation.

11/2 **Introduction to emotional intelligence** -
Stanford case study: 1.1 “Shining without alienating”
Testing emotional intelligence: http://greatergood.berkeley.edu/ei_quiz/

11/4 **The importance of resiliency: learning from setbacks and mistakes**
Stanford case study: 7.2 “Learning from a mistake”
TED talk: Amy Cuddy: "Your body language shapes who you are"
11/9 Team dynamics: the importance of the weakest link
This American Life – “Ruining it for the rest of us” NPR podcast
Case study: “Slackers”
The effect of social loafing on productivity
Stanford case study 1.4 “Technical prima donna”

11/11 Moving toward leadership
Expectations and leadership styles
Stanford case study 6.5 “Bad Boss”
Stanford case study “Managing up”

11/16 Cultural Intelligence
Understanding different communication in different cultural contexts
Stanford case study 4.5 “Power challenge”
Case Study: “The careless collaborators”

STUDENT CASE STUDY 1

11/18 Mentoring undergraduates in the lab: a new perspective on teaching
Stanford case study 3.3 “Personal problems”

STUDENT CASE STUDY 2

11/23 Motivating others who aren’t like you
Stanford case study 4.4 “Unmotivated subordinate”
Stanford case study: 4.3 “Reaching Generation Y?”
The FISH philosophy

STUDENT CASE STUDY 3

11/25 Thanksgiving Holiday

11/30 Conflict management
Styles of conflict management
Stanford case study 6.2 “Working with difficult peers”.

STUDENT CASE STUDY 4
Texas A&M University
Departmental Request for a New Course
Undergraduate • Graduate • Professional
Submit original form and attach a course syllabus.

Form Instructions
1. Course request type:
 □ Undergraduate □ Graduate □ First Professional (DDS, MD, JD, PharmD, DVM)
2. Request submitted by (Department or Program Name): Department of Soil and Crop Sciences
3. Course prefix, number and complete title of course:
 SCSC 628 Soil Mineralogy Lab
4. Catalog course description (not to exceed 50 words):
 SCSC 628 Soil Mineralogy Lab. (4). Credit: 2. Mineral identification and quantification techniques involving theory and practice with x-ray diffraction, electron microscopy (SEM and TEM), Fourier transform infrared spectroscopy, and chemical methods. 2,000 Credit hours; 4,000 Lab hours

5. Prerequisite(s):
 SCSC 626, Soil Mineralogy
 Cross-listed with:
 Stacked with:
 Cross-listed courses require the signature of both department heads.

6. Is this a variable credit course? □ Yes □ No If yes, from ________ to ________
7. Is this a repeatable course? □ Yes □ No If yes, this course may be taken ________ times.
 Will this course be repeated within the same semester? □ Yes □ No
8. Will this course be submitted to the Core Curriculum Council? □ Yes □ No
9. How will this course be graded: □ Grade □ S/U □ P/F (CLMD)
10. This course will be:
 a. required for students enrolled in the following degree program(s) (e.g., B.A. in history)
 b. an elective for students enrolled in the following degree program(s) (e.g., M.S., Ph.D. in geography)
 MS or PhD in Agronomy, Plant Breeding, Soil Science, Genetics, MEPS, Horticulture

11. If other departments are teaching or are responsible for related subject matter, the course must be coordinated with these departments. Attach approval letters.
12. □ I certify that I have reviewed the FAQ for Export Control Basics for Distance Education (http://vpr.tamu.edu/resources/export-controls/export-controls-basics-for-distance-education).

13. Prefix Course # Title (excluding punctuation)
 SCSC 628 Soil Mineralogy Lab
 Lect. Lab Other SCH CIP and Fund Code Admin. Unit Acad. Year EICE Code
 4.00 2.00 01.1201.00 2620 16 - 17 0 0 3 6 3 2
 Approval recommended by:
 Wayne Smith
 Department Head or Program Chair (Type Name & Sign) Date
 Chair, College Review Committee Date
 Department Head or Program Chair (Type Name & Sign) Date
 Dean of College Date
 Submitted to Coordinating Board by:
 Chair, GC or UCC Date
 Date
 Effective Date

Questions regarding this form should be directed to Sandra Williams at 845-8201 or sandra.williams@tamu.edu.
Curricular Services – 07/14
SCSC 628-600: Soil Mineralogy Lab

Fall 2015

Course Title: Soil Mineralogy Lab
Lab: 02:20 pm–05:10 pm, Tuesday and Thursday; 536 Heep Center
Credit Hours: 2
Instructors: Youjun Deng
 Office: 541B, Heep Center; Phone: (979)-862-8476
 e-mail: yjd@tamu.edu. Office hour: 2-4 pm, Wednesday.
Teaching Assistants: Chun-Chun Hsu and Sabrina Alam
 e-mail: chunchunhsu@tamu.edu, ssalam@tamu.edu
Class Web Site: http://youjun.deng.tamu.edu/scsc628/index.htm
Prerequisite: SCSC 628. Soil mineralogy. Can take in parallel.
 2014. Texas A&M University, College Station. TX. (available from instructor.)

Course Description

Lab Exercises/Research Projects: In the laboratory sessions, you will conduct independent
mineralogy analysis on a sample that is related to your graduate research or professional interest.
You will focus on identification, quantification, characterization, and modeling of the minerals.
State-of-the-art instruments including a fully automated X-ray diffractometer, field emission electron
microscopes (SEM and TEM), and a Fourier transform infrared spectrometer will be used for
the analysis with chemical characterization. We have made significant efforts to shorten the time
in sample pretreatment and size fractionation so that you can focus on data interpretation. At the
beginning of the lab exercises, you will need to come to the lab in both Tuesdays and Thursdays,
and even occasionally in other days. When the samples are fractionated and processed for later
analysis, the Thursday labs will become shorter or free.

Project Presentation

As part of the lab exercises, you are required to summarize your mineral analysis data in a report.
The report will be in a journal article format. Some examples from previous years are posted
on our class web site. At the end of the semester, you will deliver an oral presentation to the class in
the way that you would give at professional conferences.

Learning Outcomes

At the end of the semester, I expect that you

- be able to identify and quantify common minerals in soils, clays, and sediments;
• understand the principles of common soil mineral analysis methods and instruments, know
the advantages and limitations of each method and instrument;
• be able to design mineralogy experiments that are tailored to your specific research objectives;

<table>
<thead>
<tr>
<th>Grading</th>
</tr>
</thead>
<tbody>
<tr>
<td>First 3 lab reports: 45% total (15% each)</td>
</tr>
<tr>
<td>Final lab report: 25%</td>
</tr>
<tr>
<td>Lab exam: 20%</td>
</tr>
<tr>
<td>Oral presentation: 10%</td>
</tr>
<tr>
<td>A:≥90%; B:80-89%; C:70-79%; D:60-69%; F:<60%.</td>
</tr>
<tr>
<td>Late turn-in: 10% deduction of full points a day.</td>
</tr>
</tbody>
</table>

Attendance and Make-up Policies

Regular attendance in the class is expected. If an absence is excused, the instructor will provide
the student an opportunity to make up any quiz, exam or other work that contributes to the final
grade. The make-up work must be completed in a timeframe not to exceed 30 calendar days from
the last day of the initial absence.

For students taking the class remotely and cannot attend the weekly lab exercises, the instruc-
tor and the students need to work out an alternative plan (e.g., 2 weeks of intense lab exercises)
for the students to complete all of the required lab work.

The student is responsible for providing satisfactory evidence to the instructor to substantiate
the reason for the absence. Among the reasons absences are considered excused by the university
are the following (see Student Rule 7 for details http://studentrules.tamu.edu/rule07). The fact
that these are university-excused absences does not relieve the student of responsibility for prior
notification and documentation. Failure to notify and/or document properly may result in an
unexcused absence. Falsification of documentation is a violation of the Honor Code.

1. Participation in an activity that is required for a class and appears on the university authorized
 activity list at https://studentactivities.tamu.edu/app/sponsauth/index
2. Death or major illness in a student’s immediate family.
3. Illness of a dependent family member.
4. Participation in legal proceedings or administrative procedures that require a student’s pres-
 ence.
5. Religious holy day. NOTE: Prior notification is NOT required.
6. Injury or illness that is too severe or contagious for the student to attend class.
 (a) Injury or illness of three or more class days: Student will provide a medical confirmation
 note from his or her medical provider within one week of the last date of the absence
 (see Student Rules 7.1.6.1)
 (b) Injury or illness of less than three class days: Student will provide one or both of these
 (at instructors discretion), within one week of the last date of the absence:
 i. Texas A&M University Explanatory Statement for Absence from Class form avail-
 able at http://attendance.tamu.edu
 ii. Confirmation of visit to a health care professional affirming date and time of visit.
 (c) An absence for a non-acute medical service does not constitute an excused absence.
7. Required participation in military duties.
8. Mandatory admission interviews for professional or graduate school that cannot be rescheduled.
9. Mandatory participation as a student-athlete in NCAA-sanctioned competition.
10. In accordance with Title IX of the Educational Amendments of 1972, Texas A&M University shall treat pregnancy (childbirth, false pregnancy, termination of pregnancy and recovery therefrom) and related conditions as a justification for an excused absence for so long a period of time as is deemed medically necessary by the student's physician. Requests for excused absence related to pregnancy should be directed to the instructor.

Other absences may be excused at the discretion of the instructor with prior notification and proper documentation.

In cases where prior notification is not feasible (e.g., accident or emergency) the student must provide notification by the end of the second working day after the absence, including an explanation of why notice could not be sent prior to the class.

Accommodations sought for absences due to the observance of a religious holiday can be sought either prior or after the absence, but not later than two working days after the absence.

ADA Policy Statement

The Americans with Disabilities Act (ADA) is a federal antidiscrimination statute that provides comprehensive civil rights protection for persons with disabilities. Among other things, this legislation requires that all students with disabilities be guaranteed a learning environment that provides for reasonable accommodation of their disabilities. If you believe you have a disability requiring an accommodation, please contact the Department of Student Life, services for students with disabilities in Room 126 of the Koldus Building, or call 845-1637.

An Aggie does not lie, cheat, or steal or tolerate those who do.
Table 1. Tentative schedule—Fall 2015.

<table>
<thead>
<tr>
<th>Date</th>
<th>SCSC626</th>
<th>SCSC628</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lecture/Reading</td>
<td>Lab exercises/Homework Assignments</td>
</tr>
<tr>
<td>1</td>
<td>09/01 Ch.1 Introduction to soil min.</td>
<td>Identify min. using XRD</td>
</tr>
<tr>
<td>2</td>
<td>09/03 Ch.1 Introduction to soil min.</td>
<td>Sample evaluation (XRD, ATR, NIR-DRIFT)</td>
</tr>
<tr>
<td>3</td>
<td>09/08 Ch.1 Introduction to soil min.</td>
<td>Sample pretreatment, cementing compounds</td>
</tr>
<tr>
<td></td>
<td>Ch.2 Surface chem. of soil min.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>09/10 Ch.2 Surface chem. of soil min.</td>
<td>Size fractionation, HW1 Due.</td>
</tr>
<tr>
<td>5</td>
<td>09/15 Ch.4 Min. equilibria</td>
<td>Size fractionation</td>
</tr>
<tr>
<td>6</td>
<td>09/17 Ch.4 Min. equilibria</td>
<td>Dialysis/drying</td>
</tr>
<tr>
<td>7</td>
<td>09/22 Ch.5 Methods for mineralogy</td>
<td>Mg-, K-saturation of clay (for XRD) (HW 2 due)</td>
</tr>
<tr>
<td>8</td>
<td>09/24 Ch.6 Carbonates & evaporates</td>
<td>Field trip 1 (Easterwood airport area)</td>
</tr>
<tr>
<td>9</td>
<td>09/29 Ch.7 Sulfides & sulfates</td>
<td>Iron oxides (DCB) (Lab Report I due)</td>
</tr>
<tr>
<td>10</td>
<td>10/01 Exam I</td>
<td>Iron oxides (DCB)</td>
</tr>
<tr>
<td>11</td>
<td>10/06 Ch.8 Aluminum hydroxides</td>
<td>FTIR (Clay) Field trip 1 report due</td>
</tr>
<tr>
<td>12</td>
<td>10/08 Ch.9 Allophane & imogolite</td>
<td>Clay XRD and FTIR interpretation</td>
</tr>
<tr>
<td>13</td>
<td>10/13 Ch.10 Iron oxides</td>
<td>CEC/ SEM (HW3 due)</td>
</tr>
<tr>
<td>14</td>
<td>10/15 Ch.11 Manganese oxides</td>
<td>CEC/SEM (Lab Report II due)</td>
</tr>
<tr>
<td>15</td>
<td>10/20 Ch.12 Kaolin-serpentine mins.</td>
<td>TEM</td>
</tr>
<tr>
<td>16</td>
<td>10/22 Ch.13 Pyrophyllite-talc mins.</td>
<td>TEM</td>
</tr>
<tr>
<td>17</td>
<td>10/27 Ch.14 Micas</td>
<td>TEM(HW4 due)</td>
</tr>
<tr>
<td>18</td>
<td>10/29 Ch.15 Smectites, Ch.16 Vermiculites,</td>
<td>Total K</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>11/03 Exam II</td>
<td>Field trip 2 (Somerville Lake spillway)</td>
</tr>
<tr>
<td>20</td>
<td>11/05 Ch.17 Chlorites, Ch.18 Polygorskite & sepiolite</td>
<td>Total K/SEM interpretation help</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>11/10 Ch.19 Zeolites</td>
<td>TEM data interpretation help</td>
</tr>
<tr>
<td>22</td>
<td>11/12 Ch.20 Silica mins.</td>
<td>NEWMOD (Lab Report III due)</td>
</tr>
<tr>
<td>23</td>
<td>11/17 Feldspars</td>
<td>Data integration, Field trip 2 report due</td>
</tr>
<tr>
<td>24</td>
<td>11/19 Ch.21 Phosphate mins.</td>
<td>Data integration,</td>
</tr>
<tr>
<td>25</td>
<td>11/24 Ch.22 Ti & Zr mins.</td>
<td>Individual helps</td>
</tr>
<tr>
<td>26</td>
<td>11/26 Thanksgiving, No class</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>12/01 Ch.3 SOM & organic-min.</td>
<td>Final lab report due</td>
</tr>
<tr>
<td>28</td>
<td>12/03 Ch.26 Pesticides/mins.</td>
<td>Oral presentation</td>
</tr>
<tr>
<td>29</td>
<td>12/08 Review, Q/A.</td>
<td>Lab Exam</td>
</tr>
<tr>
<td>30</td>
<td>12/10 Reading day, No class</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>12/11 Final Exam: 3-5 pm</td>
<td></td>
</tr>
</tbody>
</table>

Lab reports:
Report 1: Sample evaluation, bulk sample XRD, and texture
Report 2: XRD, FTIR (clay and bulk sample), mineral identification.
Report 3: Iron oxide, CEC, SEM data
Final report: Revised contents in reports 1, 2, and 3; TEM, total K, NEWMOD, data integration.
Texas A&M University

Departmental Request for a New Course

Undergraduate • Graduate • Professional

Submit original form and attach a course syllabus.

Form Instructions

1. Course request type:
 - [] Undergraduate
 - [] Graduate
 - [] First Professional

2. Request submitted by (Department or Program Name):
 Department of Sociology
 SOCI 683: Professional Writing and Publication

3. Course prefix, number and complete title of course:

4. Catalog course description (not to exceed 50 words):
 Provides instruction in professional writing skills, socialization in academic publishing and peer review.

5. Prerequisite(s):
 Graduate classification in Sociology and having a completed paper that is ready to be work-shopped and revised.

6. Cross-listed with:
 - [] NA
 - [] Stacked with:
 - [] NA
 Cross-listed courses require the signature of both department heads.

7. Is this a variable credit course?
 - [] Yes
 - [] No

 If yes, from ________ to ________

8. Is this a repeatable course?
 - [] Yes
 - [] No

 If yes, this course may be taken ________ times.

9. Will this course be repeated within the same semester?
 - [] Yes
 - [] No

10. Will this course be submitted to the Core Curriculum Council?
 - [] Yes
 - [] No

11. How will this course be graded:
 - [] Grade
 - [] S/U
 - [] P/F (CLMD)

12. This course will be:
 a. required for students enrolled in the following degree programs(s) (e.g., B.A. in history)
 Ph.D. in Sociology
 b. an elective for students enrolled in the following degree program(s) (e.g., M.S., Ph.D. in geography)
 NA

13. If other departments are teaching or are responsible for related subject matter, the course must be coordinated with these departments. Attach approval letters.

12. [] I verify that I have reviewed the FAQ for Export Control Basics for Distance Education (http://vpr.tamu.edu/resources/export-controls/export-controls-basics-for-distance-education).

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Course #</th>
<th>Title (excluding punctuation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOCI</td>
<td>683</td>
<td>Professional Writing and Publi</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lect.</th>
<th>Lab</th>
<th>Other</th>
<th>SCH</th>
<th>CIP and Fund Code</th>
<th>Admin. Unit</th>
<th>Acad. Year</th>
<th>FICE Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.00</td>
<td>0.00</td>
<td>0.00</td>
<td>3.00</td>
<td>4511010001</td>
<td>2590</td>
<td>16</td>
<td>17</td>
</tr>
</tbody>
</table>

Approval recommended by:

Jane Sell
Department Head or Program Chair (Type Name & Sign) Date: 8/18/2015

Patricia A. Hurley
Chair, College Review Committee Date: 8/20/15

Pamela K. Nezolin
Dean of College Date: 9/3/15

Chair, GC or UCC Date: 8-20-15

Questions regarding this form should be directed to Sandra Williams at 845-8201 or sandra.williams@tamu.edu.
Curricular Services – 07/14
Course Description:
This course is designed to teach students about the process of publishing research and provide guidance on improving a piece of writing to make it ready to be submitted for publication. The course is also designed to teach students to be reviewers of other people's work, to prepare for their role as professional reviewers. We will discuss developing papers to submit to peer-reviewed journals, papers to be considered for book chapters, and manuscripts to be considered for publication as research monographs and/or edited books. The goal of the seminar is to inform students about the many different aspects of publishing research. This will include the benefits of publishing and how publishing factors into career considerations. It also will include reviewing the mechanics of the process ranging from choosing topics, writing the paper, the submission process, the review process, dealing with rejection, responding to requests for revision and resubmission, and acceptance and publication.

Prerequisites:
Graduate classification in Sociology (and having a completed paper that is ready to be workshoped and revised).

Learning Outcomes:
If you successfully complete this course, you will:

- Revise a piece of your writing (such as an article, chapter or grant proposal) to be ready for submission to a peer-review process by the end of the semester;
- Understand the process of writing a scholarly piece (with or without collaboration) and how to select an appropriate outlet for your work;
- Understand the process of submitting work for publication and responding to peer review; and
- Be able to review a piece of scholarly writing submitted for peer-review.

Course website and e-mail:
The course website is available through our learning management system, eCampus. Go to ecampus.tamu.edu and log in using your NetID. The course site includes the syllabus and assignments, online readings, announcements and so forth.

Required Texts:
Readings listed in the course schedule will be made available on the course website, or can be found through the TAMU library website at http://library.tamu.edu/.
Books are available in different bookstores.

Attendance and active participation in the seminar:
Class attendance and active participation is required and are worth 10% of the final grade. In order for the seminar to be successful, everyone must be prepared for class and make regular and thoughtful contributions to the discussions, do the assigned readings, and prepare constructive and detailed reviews of other students' work. Come prepared to give thoughtful, useful feedback on other people's work and listen carefully to the feedback you receive. You earn credit for active participation by coming to class prepared with questions and comments covering that day's materials and making substantive contributions to each course meeting. If we are workshopng another student's writing that day, you also earn active participation credit by bringing prepared written and oral comments for the student.

You can find the Student Rules governing attendance policies and excused absences here: http://students.tamu.edu/rule07. More than two unexcused absences will result in a 10% reduction in your final course grade.
Assignments:
There will be five written assignments in the course, worth 50% of the final grade (10% each assignment). Due dates are listed in the course schedule, and the instructions for each assignment will be distributed in class before the deadline. Turn in your assignments on the Assignment page in eCampus. The final writing project, worth 40% of the final grade, will be the focus of the class. The final grade for the writing project will be based on the quality of the written work and your incorporation of revisions based on feedback received during the semester.

Grading:
Grades will be based on:
- Active participation in the seminar: 10%
- 5 Written Assignments: 50%
- Final writing project: 40%

Grades are based on the following scale (final grades are NOT rounded):
- 90-100%: A
- 80-89.9%: B
- 70-79.9%: C
- 60-69.9%: D
- below 60%: F

Deadlines:
All deadlines for this class are firm, and can be changed only at my discretion for individuals who contact me in advance to discuss legitimate reasons for needing extensions. If you have any problem coming up, let me know as soon as possible! Unless you have made a specific arrangement with me in advance because of a legitimate need for an extension, I will take off 2 points for each day an assignment is late.

If you encounter any problems or emergencies, please contact me immediately through email.

Other Class Policies:
1. Please turn off and put away cell phones before class begins.
2. Check the course website and your university email account regularly for updates and announcements. If you miss class, make sure to get the notes from another student. Also check the course website to find out if you missed any announcements or handouts.
3. The Americans with Disabilities Act (ADA) is a federal anti-discrimination statute that provides comprehensive civil rights protection for persons with disabilities. Among other things, this legislation requires that all students with disabilities be guaranteed a learning environment that provides for reasonable accommodation of their disabilities. If you believe you have a disability requiring an accommodation, please contact Disability Services, in Cain Hall, Room B118, or call 845-1637. For additional information visit http://disability.tamu.edu. I would like to hear from anyone who has a disability which may require some modification of seating, testing, or other class requirements so that appropriate arrangements may be made. Please contact me during my office hours.
4. Regarding plagiarism and cheating: if you are in doubt about whether or not something is ethical (such as how to use materials from a book, helping your roommate, etc.), please come discuss it with me! I am happy to help you figure out how to cite sources in your projects or anything else you find confusing. Academic honesty is the glue that holds intellectual communities like ours together and it requires giving every author credit for their ideas and their words. Thus it is very important to always properly cite your sources in anything you turn in. Although you are welcome to discuss your ideas for your projects with me or anyone else, I expect that you will turn in your own work for all written assignments in this class, and that you will not cheat on exams. This is an essential part of the Aggie Honor Code:

An Aggie does not lie, cheat or steal or tolerate those who do.

If you have questions about the Aggie Honor Code or the Honor Council Rules and Procedures, see http://aggiehonor.tamu.edu.
Proposed Course Schedule
(subject, of course, to revision as we go along...)

Reading:
Stoicescu, Dorian and Douglas McDougall. 2010. “Starting to Publish Academic Research as a Doctoral Student.”

Week 2: Differences among Publishing Outlets – How do I choose an outlet?
*Assignment 1 Due

Week 3: Setting Goals – Developing short- and long-term research and writing goals, and strategies for meeting them
Reading:
http://www.asanet.org/documents/teaching/pdfs/Quick_Tips_forASA_Style.pdf

Week 4: The Review Process – Learning to think like a reviewer
Reading:

Week 5: Focus on Articles – Nuts & bolts of journal publication
*Assignment 2 Due

Reading:

Week 6: Focus on Monographs – Nuts & bolts of book publication
Reading:

Week 7: Professional Norms and Expectations – Quality of writing, argument, analysis, and manuscript preparation
Reading:

Week 8: Presenting, Reviewing and Revising Work (Workshopping papers)
*Assignment 3 Due

Week 9: Presenting, Reviewing and Revising Work (Workshopping papers)
Week 10: Presenting, Reviewing and Revising Work (Workshopping papers)
Week 11: Presenting, Reviewing and Revising Work (Workshopping papers)
Week 12: Revision – Writing the revision memo
*Assignment 4 Due

Week 13: Co-authoring – Norms and guidelines
Week 14: Time to Submit – Final copyediting before submission for peer review

Week 15: Time of scheduled final exam: Assignment 5 Due